Lesson 4.4 Exercises, pages 314–321

Α

3. For each function below, determine possible functions f and g so that y = f(g(x)).

a)
$$y = (x + 4)^2$$
 b) $y = \sqrt{x + 5}$

Sample solution:

Let $f(g(x)) = (x + 4)^2$ Let $f(g(x)) = \sqrt{x + 5}$

Replace $x + 4$ with x .

Then, $g(x) = x + 4$ and $f(x) = x^2$ Then, $g(x) = x + 5$ and $f(x) = \sqrt{x}$

c)
$$y = \frac{1}{x-2}$$
 d) $y = (6-x)^3$

Sample solution:

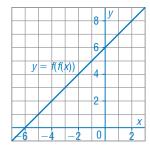
Let $f(g(x)) = \frac{1}{x-2}$ Sample solution:

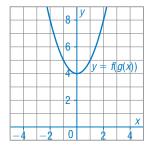
Let $f(g(x)) = (6-x)^3$ Replace $f(g(x)) =$

4. Given f(x) = x + 3 and $g(x) = x^2 + 1$, sketch the graph of each composite function below then state its domain and range.

$$\mathbf{a}) \ y = f(f(x))$$

b)
$$y = f(g(x))$$



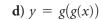


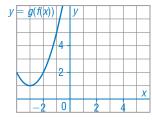
Make a table of values for the functions.

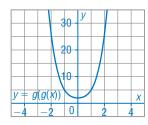
Х	f(x)	f(f(x))	g(x)	f(g(x))	g(f(x))	g(g(x))
-4	-1	2	17	20	2	290
-3	0	3	10	13	1	101
-2	1	4	5	8	2	26
-1	2	5	2	5	5	5
0	3	6	1	4	10	2
1	4	7	2	5	17	5
2	5	8	5	8	26	26

- a) Graph the points with coordinates (x, f(f(x))) that fit on the grid. Draw a line through the points for the graph of y = f(f(x)). From the graph, the domain is $x \in \mathbb{R}$ and the range is $y \in \mathbb{R}$.
- b) Graph the points with coordinates (x, f(g(x))) that fit on the grid. Draw a smooth curve through the points for the graph of y = f(g(x)). From the graph, the domain is $x \in \mathbb{R}$ and the range is $y \ge 4$.

c)
$$y = g(f(x))$$







- c) Graph the points with coordinates (x, g(f(x))) that fit on the grid. Draw a smooth curve through the points for the graph of y = g(f(x)). From the graph, the domain is $x \in \mathbb{R}$. From the table, the range is $y \ge 1$.
- d) Graph the points with coordinates (x, g(g(x))) that fit on the grid. Draw a smooth curve through the points for the graph of y = g(g(x)). From the graph, the domain is $x \in \mathbb{R}$. From the table, the range is $y \ge 2$.

- **5.** Consider the function h(x) = (x 1)(x + 5).
 - a) Why is it incorrect to write h(x) = f(g(x)), where f(x) = x 1 and g(x) = x + 5?

It is incorrect because, as written, h(x) is the product of f(x) and g(x), not their composition.

b) For what functions f(x) and g(x) is h(x) a composite function?

Expand:
$$h(x) = (x - 1)(x + 5)$$

 $h(x) = x^2 + 4x - 5$
Complete the square: $h(x) = (x^2 + 4x + 4) - 9$

Complete the square: $h(x) = (x^2 + 4x + 4) - 9$ $h(x) = (x + 2)^2 - 9$

Possible functions are: $f(x) = x^2 - 9$ and g(x) = x + 2 for h(x) = f(g(x))

- **6.** For each pair of functions below:
 - i) Determine an explicit equation for the indicated composite function.
 - **ii**) State the domain of the composite function, and explain any restrictions on the variable.

a)
$$f(x) = \sqrt{x+1}$$
 and $g(x) = x^2 - x - 6$; $g(f(x))$

i)
$$\ln g(x) = x^2 - x - 6$$
, replace x with $\sqrt{x+1}$.
 $g(f(x)) = (\sqrt{x+1})^2 - \sqrt{x+1} - 6$
 $g(f(x)) = x+1 - \sqrt{x+1} - 6$
 $g(f(x)) = x-5 - \sqrt{x+1}$

ii) The domain of $f(x) = \sqrt{x+1}$ is $x \ge -1$. The domain of $g(x) = x^2 - x - 6$ is $x \in \mathbb{R}$.

So, the domain of g(f(x)) is $x \ge -1$.

The variable *x* is restricted because the square root of a real number is only defined for numbers that are greater than or equal to 0.

b)
$$f(x) = \sqrt{x-1}$$
 and $g(x) = \frac{1}{x+3}$; $g(f(x))$

i) In
$$g(x) = \frac{1}{x+3}$$
, replace x with $\sqrt{x-1}$.

$$g(f(x)) = \frac{1}{\sqrt{x-1}+3}$$

ii) The domain of $f(x) = \sqrt{x-1}$ is $x \ge 1$.

The domain of $g(x) = \frac{1}{x+3}$ is $x \neq -3$.

-3 is not in the range of f(x).

So, the domain of g(f(x)) is $x \ge 1$.

The variable *x* is restricted because the square root of a real number is only defined for numbers that are greater than or equal to 0.

c)
$$f(x) = \sqrt{x+3}$$
 and $g(x) = 2x - 1$; $f(g(x))$

i)
$$\ln f(x) = \sqrt{x + 3}$$
, replace x with $2x - 1$.
 $f(g(x)) = \sqrt{2x - 1 + 3}$
 $f(g(x)) = \sqrt{2x + 2}$

ii) The domain of
$$g(x) = 2x - 1$$
 is $x \in \mathbb{R}$.
The domain of $f(x) = \sqrt{x + 3}$ is $x \ge -3$.

So,
$$g(x) \ge -3$$

 $2x - 1 \ge -3$
 $2x \ge -2$
 $x \ge -1$

So, the domain of f(g(x)) is $x \ge -1$.

The variable x is restricted because the square root of a real number is only defined for numbers that are greater than or equal to 0.

d)
$$f(x) = \frac{1}{x-1}$$
 and $g(x) = x^2 + 2x$; $f(f(x))$

i) In
$$f(x) = \frac{1}{x-1}$$
, replace x with $\frac{1}{x-1}$.

$$f(f(x)) = \frac{1}{\frac{1}{x-1} - 1}$$
, which simplifies to $f(f(x)) = \frac{x-1}{2-x}, x \neq 1$

ii) The domain of
$$f(x) = \frac{1}{x-1}$$
 is $x \ne 1$.

Also,
$$2 - x \neq 0$$

 $x \neq 2$

So, the domain of f(f(x)) is $x \ne 1$ and $x \ne 2$.

The variable x is restricted because the denominator of a fraction can never be 0.

7. For each function below

- i) Determine possible functions f and g so that y = f(g(x)).
- ii) Determine possible functions f, g, and h so that y = f(g(h(x))).

a)
$$y = x^2 - 6x + 5$$

b)
$$y = -3x^2 - 30x - 40$$

Sample solution:

$$y = x^{2} - 6x + 5$$

$$y = (x^{2} - 6x + 9) - 4$$

$$y = (x - 3)^{2} - 4$$

Let
$$f(g(x)) = (x-3)^2 - 4$$

i) Replace
$$x - 3$$
 with x .
Then, $g(x) = x - 3$ and $f(x) = x^2 - 4$

ii) Replace
$$x - 3$$
 with x .
Then, $h(x) = x - 3$, $g(x) = x^2$ and $f(x) = x - 4$

y =
$$-3x^2 - 30x - 40$$

y = $-3(x^2 + 10x + 25) + 75 - 40$
y = $-3(x + 5)^2 + 35$
Let $f(g(x)) = -3(x + 5)^2 + 35$

i) Replace
$$x + 5$$
 with x .
Then, $g(x) = x + 5$ and $f(x) = -3x^2 + 35$

Replace
$$x - 3$$
 with x .
Then, $h(x) = x - 3$, $g(x) = x^2$, and $f(x) = x - 4$ ii) Replace $x + 5$ with x .
Then, $h(x) = x + 5$, $g(x) = x^2$, and $f(x) = -3x + 35$

c)
$$y = \sqrt{(x-2)^2 + 3}$$

d) $y = \sqrt{x^2 + 4x + 3}$

Sample solution:

Let
$$f(g(x)) = \sqrt{(x-2)^2 + 3}$$

- i) Replace x 2 with x. Then, g(x) = x - 2 and $f(x) = \sqrt{x^2 + 3}$
- ii) Replace x 2 with x. Then, h(x) = x - 2, $g(x) = x^2$, and $f(x) = \sqrt{x + 3}$

Sample solution:

$$y = \sqrt{x^2 + 4x + 3}$$

$$y = \sqrt{(x^2 + 4x + 4) - 1}$$

$$y = \sqrt{(x + 2)^2 - 1}$$
Let $f(g(x)) = \sqrt{(x + 2)^2 - 1}$

- i) Replace x + 2 with x. Then, g(x) = x + 2 and $f(x) = \sqrt{x^2 - 1}$
- ii) Replace x + 2 with x. Then, h(x) = x + 2, $g(x) = x^2$, and $f(x) = \sqrt{x - 1}$
- **8.** Create composite functions using either or both functions in each pair of functions below. In each case, how many different composite functions could you create? Justify your answer.

a)
$$f(x) = |x|$$
 and $g(x) = \frac{1}{x}$

$$f(f(x)) = ||x||$$
, which simplifies to $f(f(x)) = |x|$

$$f(g(x)) = \left|\frac{1}{x}\right|$$
, which simplifies to $f(g(x)) = \frac{1}{|x|}$

$$g(f(x)) = \frac{1}{|x|}$$

$$g(g(x)) = \frac{1}{\frac{1}{x}}$$
, which simplifies to $g(g(x)) = x$, $x \neq 0$

There are only 3 different composite functions, because f(g(x)) = g(f(x)).

b)
$$f(x) = \sqrt{x}$$
 and $g(x) = |x|$

$$f(f(x)) = \sqrt{\sqrt{x}}$$

$$f(g(x)) = \sqrt{|x|}$$

$$g(f(x)) = |\sqrt{x}|$$
, which simplifies to $g(f(x)) = \sqrt{x}$

$$g(g(x)) = ||x||$$
, which simplifies to $g(g(x)) = |x|$

There are 4 different composite functions.

c)
$$f(x) = x^3$$
 and $g(x) = \frac{1}{x}$

$$f(f(x)) = (x^3)^3$$
, which simplifies to $f(f(x)) = x^9$

$$f(g(x)) = \left(\frac{1}{x}\right)^3$$
, which simplifies to $f(g(x)) = \frac{1}{x^3}$

$$g(f(x)) = \frac{1}{x^3}$$

$$g(g(x)) = \frac{1}{1}$$
, which simplifies to $g(g(x)) = x$, $x \neq 0$

There are only 3 different composite functions, because f(g(x)) = g(f(x)).

- **9.** Given the function $y = \frac{x}{\sqrt{x-3}}$, determine possible functions:
 - **a)** f and g so that $y = \frac{f(x)}{g(x)}$

Sample solution:

$$f(x) = x$$
 and $g(x) = \sqrt{x-3}$

b) f, g, and h so that $y = \frac{f(x)}{g(h(x))}$

Sample solution:

Replace x - 3 with x.

Let
$$h(x) = x - 3$$
, then $g(x) = \sqrt{x}$, and $f(x) = x$.

c) f and g so that y = f(g(x))

Sample solution:

When g(x) replaces x in f(x), the numerator must be x and the denominator

must be
$$\sqrt{x-3}$$
. So, $g(x) = x - 3$ and $f(x) = \frac{x+3}{\sqrt{x}}$

- **10.** Given the functions $f(x) = \sqrt{x}$, $g(x) = x^2 x + 6$, and $k(x) = \frac{2}{x}$, write an explicit equation for each combination.
 - **a)** h(x) = f(g(x)) + k(x)

b)
$$h(x) = g(f(x)) - f(g(x))$$

For f(q(x)), replace x in

$$f(x) = \sqrt{x} \text{ with } x^2 - x + 6.$$

Then,
$$f(g(x)) = \sqrt{x^2 - x + 6}$$

So,
$$h(x) = \sqrt{x^2 - x + 6} + \frac{2}{x'}$$

$$x \neq 0$$

For
$$q(f(x))$$
, replace x in

$$g(x) = x^2 - x + 6 \text{ with } \sqrt{x}.$$

Then,
$$g(f(x)) = (\sqrt{x})^2 - \sqrt{x} + 6$$

Or,
$$g(f(x)) = x - \sqrt{x} + 6$$
, $x \ge 0$

So,
$$h(x) = x - \sqrt{x} + 6 - \sqrt{x^2 - x + 6}, x \ge 0$$

 $f(g(x)) = \sqrt{x^2 - x + 6}$ So, $h(x) = \sqrt{x^2 - x + 6} \cdot \left(\frac{2}{x}\right), x \neq 0$

c) h(x) = k(g(x)) + k(f(x)) **d)** $h(x) = f(g(x)) \cdot k(x)$

d)
$$h(x) = f(g(x)) \cdot k(x)$$

From part a,

For k(g(x)), replace x in

$$k(x) = \frac{2}{x} \text{ with } x^2 - x + 6.$$

Then,
$$k(g(x)) = \frac{2}{x^2 - x + 6}$$

For k(f(x)), replace x in

$$k(x) = \frac{2}{x}$$
 with $f(x) = \sqrt{x}$

Then,
$$k(f(x)) = \frac{2}{\sqrt{x}}, x > 0$$

So,
$$h(x) = \frac{2}{x^2 - x + 6} + \frac{2}{\sqrt{x}}, x > 0$$

- **11.** Given the function $y = (x^2 9)\sqrt{x + 2}$, determine possible functions in each case:
 - a) functions f and g so that $y = f(x) \cdot g(x)$

Sample solution:

$$f(x) = x^2 - 9$$
 and $g(x) = \sqrt{x+2}$

b) functions f, g, and h so that $y = f(x) \cdot g(h(x))$

Sample solution:

$$f(x) = x^2 - 9$$

For $g(h(x))$, let $h(x) = x + 2$, then $g(x) = \sqrt{x}$

c) functions f, g, h, and k so that $y = f(x) \cdot k(x) \cdot g(h(x))$

Sample solution:

From part b, for
$$g(h(x))$$
, let $h(x) = x + 2$, then $g(x) = \sqrt{x}$
Factor: $x^2 - 9 = (x + 3)(x - 3)$
Then, $f(x) = x + 3$ and $k(x) = x - 3$

12. Is there a function f(x) such that each relationship is true? Justify your answer.

$$\mathbf{a}) f(f(x)) = f(x)$$

b)
$$f(f(x)) = f(x) + f(x)$$

Yes, when
$$f(x) = x$$
, then $f(f(x)) = x$

Yes, when
$$f(x) = 2x$$
, then $f(f(x)) = 4x$
and $f(x) + f(x) = 2x + 2x$, or $4x$

C

- **13.** Given $f(x) = \frac{1}{x-2}$, g(x) is a quadratic function, and h(x) = f(g(x)), determine an explicit equation for g(x) for each situation below. Explain your strategies.
 - a) The domain of h(x) is $x \in \mathbb{R}$.

Sample solution: The denominator of h(x) must never be 0.

When
$$g(x) = x^2 + 3$$
, then $f(g(x)) = \frac{1}{x^2 + 3 - 2}$, which simplifies to $f(g(x)) = \frac{1}{x^2 + 1}$.

b) The domain of h(x) is $x \ne a$ and $x \ne b$, where a and b are real numbers.

Sample solution: There must be exactly two values of x that make the denominator of h(x) equal to 0. When $g(x) = x^2 + 1$, then

$$f(g(x)) = \frac{1}{x^2 + 1 - 2}$$
, which simplifies to $f(g(x)) = \frac{1}{x^2 - 1}$.

So,
$$a = 1$$
 and $b = -1$

c) The domain of h(x) is $x \neq c$, where c is a real number.

Sample solution: There must be exactly one value of x that makes the denominator of h(x) equal to 0. When $g(x) = x^2 + 2$, then

$$f(g(x)) = \frac{1}{x^2 + 2 - 2}$$
, which simplifies to $f(g(x)) = \frac{1}{x^2}$. So, $c = 0$

- **14.** Use $f(x) = \frac{1-x}{1+x}$.
 - a) Determine an explicit equation for f(f(x)), then state the domain of the function.

In
$$f(x) = \frac{1-x}{1+x'}$$
 replace x with $\frac{1-x}{1+x}$

$$f(f(x)) = \frac{1 - \frac{1 - x}{1 + x}}{1 + \frac{1 - x}{1 + x}}$$
$$= \frac{\frac{1 + x - (1 - x)}{1 + x}}{\frac{1 + x + (1 - x)}{1 + x}}$$
$$= x, x \neq -1$$

The domain of the function is: $x \neq -1$

b) What is the inverse of f(x)? Explain.

Since $f(f(x)) = x, x \neq -1$, then f(x) is its own inverse.

So, the inverse of
$$f(x)$$
 is $f^{-1}(x) = \frac{1-x}{1+x}$.