Lesson 5.3 Exercises, pages 364-368

A
3. Write each number as a power of 2 .
a) 16
b) 128
c) $\frac{1}{32}$
d) 1
$=2^{4}$
$=2^{7}$
$=2^{-5}$

$$
=2^{0}
$$

4. Which numbers below can be written as powers of 5 ? Write each number you identify as a power of 5 .
a) 125
b) 10
c) $\frac{1}{25}$
d) 1
$=5^{3}$
cannot be
written as a
$=5^{-2}$
$=5^{0}$
power of 5
5. Write each number as a power of 3 .
a) $\sqrt[3]{9}$
b) $\sqrt{243}$
c) $\frac{\sqrt{3}}{3}$
d) $27 \sqrt{3}$
$=9^{\frac{1}{3}}$
$=243^{\frac{1}{2}}$
$=3^{\frac{1}{2}} \cdot 3^{-1}$
$=3^{3} \cdot 3^{\frac{1}{2}}$
$=\left(3^{2}\right)^{\frac{1}{3}}$
$=\left(3^{5}\right)^{\frac{1}{2}}$
$=3^{\frac{1}{2}-1}$
$=3^{3+\frac{1}{2}}$
$=3^{\frac{2}{3}}$
$=3^{\frac{5}{2}}$
$=3^{-\frac{1}{2}}$
$=3^{\frac{7}{2}}$

B
6. Solve each equation.
a) $2^{x}=256$
$2^{x}=2^{8}$
$x=8$
b) $81=3^{x+1}$

$$
\begin{aligned}
3^{4} & =3^{x+1} \\
4 & =x+1 \\
x & =3
\end{aligned}
$$

c) $3^{x}=9^{x-2}$
d) $4^{x-1}=2^{x+3}$

$$
\begin{aligned}
3^{x} & =\left(3^{2}\right)^{x-2} \\
x & =2(x-2) \\
x & =2 x-4 \\
x & =4
\end{aligned}
$$

$$
\begin{aligned}
\left(2^{2}\right)^{x-1} & =2^{x+3} \\
2(x-1) & =x+3 \\
2 x-2 & =x+3 \\
x & =5
\end{aligned}
$$

e) $8^{2 x}=16^{x+3}$

$$
\begin{aligned}
\left(2^{3}\right)^{2 x} & =\left(2^{4}\right)^{x+3} \\
3(2 x) & =4(x+3) \\
6 x & =4 x+12 \\
2 x & =12 \\
x & =6
\end{aligned}
$$

f) $9^{x+1}=243^{x+3}$

$$
\left(3^{2}\right)^{x+1}=\left(3^{5}\right)^{x+3}
$$

$$
2(x+1)=5(x+3)
$$

$$
2 x+2=5 x+15
$$

$$
-3 x=13
$$

$$
x=-\frac{13}{3}
$$

7. Use graphing technology to solve each equation. Give the solution to the nearest tenth.
a) $10=2^{x}$

Graph: $y=2^{x}-10$
The approximate zero is
3.3219281
$x \doteq 3.3$
b) $3^{x}=100$

Graph: $y=100-3^{x}$
The approximate zero is 4.1918065 $x \doteq 4.2$
d) $30=2^{x-1}$

Graph: $y=2^{x-1}-30$
The approximate zero is 5.9068906 $\boldsymbol{x} \doteq 5.9$
8. Explain why the equation $4^{x}=-2$ does not have a real solution.

Verify, graphically, that there is no solution.
The value of a power with a positive base can never be negative, so the equation does not have a real solution. When I graph $y=-2-4^{x}$, the graph does not have an x-intercept.
9. Solve each equation.
a) $2^{x}=8 \sqrt[3]{2}$

$$
2^{x}=2^{3} \cdot 2^{\frac{1}{3}}
$$

$$
2^{x}=2^{3+\frac{1}{3}}
$$

$$
x=3+\frac{1}{3}
$$

$$
x=\frac{10}{3}
$$

b) $81 \sqrt{3}=3^{x}$
$3^{4} \cdot 3^{\frac{1}{2}}=3^{x}$

$$
3^{4+\frac{1}{2}}=3^{x}
$$

$$
4+\frac{1}{2}=x
$$

$$
x=\frac{9}{2}
$$

c) $2^{x+1}=2 \sqrt[3]{4}$
d) $9^{x}=\sqrt{27}$
$2^{x+1}=2 \cdot 4^{\frac{1}{3}}$
$2^{x+1}=2\left(2^{2}\right)^{\frac{1}{3}}$
$2^{x+1}=2^{1} \cdot 2^{\frac{2}{3}}$
$2^{x+1}=2^{1+\frac{2}{3}}$
$\left(3^{2}\right)^{x}=\left(3^{3}\right)^{\frac{1}{2}}$
$2 x=\frac{3}{2}$
$x=\frac{3}{4}$
$x+1=1+\frac{2}{3}$ $x=\frac{2}{3}$
e) $\sqrt[4]{216}=36^{x-1}$
f) $(\sqrt{7})^{x+1}=\sqrt[3]{49}$

$$
216^{\frac{1}{4}}=6^{2(x-1)}
$$

$\left(6^{3}\right)^{\frac{1}{4}}=6^{2(x-1)}$
$\frac{3}{4}=2 x-2$
$2 x=\frac{11}{4}$

$$
x=\frac{11}{8}
$$

$$
\begin{aligned}
7^{\frac{1}{2}(x+1)} & =\left(7^{2}\right)^{\frac{1}{3}} \\
\frac{1}{2} x+\frac{1}{2} & =\frac{2}{3} \\
3 x+3 & =4 \\
3 x & =1 \\
x & =\frac{1}{3}
\end{aligned}
$$

10. Solve each equation.
a) $\left(\frac{1}{4}\right)^{3}=2^{x}$
b) $5^{x}=\frac{\sqrt[3]{25}}{25}$

$$
\left(2^{-2}\right)^{3}=2^{x}
$$

$$
5^{x}=\left(5^{2}\right)^{\frac{1}{3}} \cdot 5^{-2}
$$

$$
(-2)(3)=x
$$

$$
x=-6
$$

$$
\begin{aligned}
5^{x} & =5^{\frac{2}{3}-2} \\
x & =\frac{2}{3}-2 \\
x & =-\frac{4}{3}
\end{aligned}
$$

c) $\frac{\sqrt[3]{49}}{343}=7^{x+1}$
d) $\left(\frac{1}{9}\right)^{x}=3 \sqrt{27}$

$$
\begin{aligned}
\left(7^{2}\right)^{\frac{1}{3}} \cdot 7^{-3} & =7^{x+1} \\
7^{\frac{2}{3}-3} & =7^{x+1}
\end{aligned}
$$

$$
\left(3^{-2}\right)^{x}=3^{1} \cdot\left(3^{3}\right)^{\frac{1}{2}}
$$

$$
3^{-2 x}=3^{1+\frac{3}{2}}
$$

$$
\frac{2}{3}-3=x+1
$$

$$
-2 x=1+\frac{3}{2}
$$

$$
-\frac{7}{3}=x+1
$$

$$
-2 x=\frac{5}{2}
$$

$$
x=-\frac{10}{3}
$$

$$
x=-\frac{5}{4}
$$

e) $8^{1-x}=\frac{\sqrt[3]{16}}{4}$

$$
\begin{aligned}
2^{3(1-x)} & =\left(2^{4}\right)^{\frac{1}{3}} \cdot 2^{-2} \\
2^{3(1-x)} & =2^{\frac{4}{3}-2} \\
3-3 x & =\frac{4}{3}-2 \\
-3 x & =-\frac{11}{3} \\
x & =\frac{11}{9}
\end{aligned}
$$

f) $\left(\frac{1}{8}\right)^{x+1}=(\sqrt[3]{16})^{x}$

$$
\begin{aligned}
\left(2^{-3}\right)^{x+1} & =\left(\left(2^{4}\right)^{\frac{1}{3}}\right)^{x} \\
-3 x-3 & =\frac{4}{3} x \\
-\frac{13}{3} x & =3 \\
x & =-\frac{9}{13}
\end{aligned}
$$

11. Use graphing technology to solve each equation. Give the solution to the nearest tenth.
a) $2=1.05^{x}$
Graph: $y=1.05^{x}-2$
The approximate zero is 14.206699 $x \doteq 14.2$
b) $2^{-\frac{x}{5}}=0.4$
Graph: $y=0.4-2^{-\frac{x}{5}}$
The approximate zero is 6.6096405
$x \doteq 6.6$
c) $2^{x+1}=3^{x-2}$

Graph: $y=3^{x-2}-2^{x+1}$
The approximate zero is 7.1285339 $x \doteq 7.1$
d) $3\left(2^{x}\right)=64$

Graph: $y=64-3\left(2^{x}\right)$
The approximate zero is 4.4150375
$x \doteq 4.4$
12. A principal of $\$ 600$ was invested in a term deposit that pays 5.5% annual interest, compounded semi-annually. To the nearest tenth of a year, when will the amount be $\$ 1000$?
Use: $A=A_{0}\left(1+\frac{i}{n}\right)^{n t} \quad$ Substitute: $A=1000, A_{0}=600, i=0.055, n=2$
$1000=600\left(1+\frac{0.055}{2}\right)^{2 t}$
Graph $y=600\left(1+\frac{0.055}{2}\right)^{2 t}-1000$, then determine the zero of the function.
The approximate zero is 9.4148676
It will take approximately 9.4 years for the term deposit to amount to $\$ 1000$.
13. a) To the nearest year, how long will it take an investment of $\$ 500$ to double at each annual interest rate, compounded annually?
i) 4%
ii) 6%
iii) 8%
iv) 9%
v) 12%

$$
\begin{aligned}
\text { Use: } A & =A_{0}\left(1+\frac{i}{n}\right)^{n t} & & \text { Substitute: } A=1000, A_{0}=500, n=1 \\
1000 & =500\left(1+\frac{i}{1}\right)^{1 t} & & \\
2 & =(1+i)^{t} & & \text { Use this expression below. }
\end{aligned}
$$

i) Substitute: $i=0.04$
$2=(1+0.04)^{t}$
$2=1.04^{t}$
Graph $y=1.04^{t}-2$,
then determine the zero of the function.
The approximate zero is: 17.672988
It will take approximately
18 years.
iii) Substitute: $i=0.08$
$2=(1+0.08)^{t}$
$2=1.08^{t}$
Graph: $y=1.08^{t}-2$
The approximate zero is: 9.0064683
It will take approximately 9 years.
ii) Substitute: $i=0.06$
$2=(1+0.06)^{t}$
$2=1.06^{t}$
Graph: $y=1.06^{t}-2$
The approximate zero is:
11.895661

It will take approximately
12 years.
iv) Substitute: $i=0.09$
$2=(1+0.09)^{t}$
$2=1.09^{t}$
Graph: $y=1.09^{t}-2$
The approximate zero is: 8.0432317
It will take approximately 8 years.
v) Substitute: $i=0.12$
$2=(1+0.12)^{t}$
$2=1.12^{t}$
Graph: $y=1.12^{t}-2$
The approximate zero is: 6.1162554
It will take approximately 6 years.
b) What pattern is there in the interest rates and times in part a?

The product of each interest rate as a percent and time in years is 72 .
14. When light passes through glass, the intensity is reduced by 5%.
a) Determine a function that models the percent of light, P, that passes through n layers of glass.

For 0 layers of glass, the percent of light is: $P=100$
For 1 layer of glass, the percent of light is: $P=100(0.95)$
For 2 layers of glass, the percent of light is: $P=100(0.95)^{2}$
For 3 layers of glass, the percent of light is: $P=100(0.95)^{3}$
For n layers of glass, the percent of light is: $P=100(0.95)^{n}$
b) Determine how many layers of glass are needed for only 25% of light to pass through.

Solve the equation: $25=100(0.95)^{n}$
Graph a related function: $y=100(0.95)^{x}-25$
The approximate zero of the function is: 27.026815
So, 27 layers of glass are needed.

C
15. Solve each equation, then verify the solution graphically.
a) $2^{\left(x^{2}\right)}=16$
b) $9^{x+4}=3^{\left(x^{2}\right)}$
$2^{\left(x^{2}\right)}=2^{4}$
$x^{2}=4$
$x= \pm 2$
The graph of $y=16-2^{\left(x^{2}\right)}$
has x-intercepts 2 and -2 .

$$
\begin{aligned}
& 3^{2(x+4)}=3^{\left(x^{2}\right)} \\
& 2 x+8=x^{2} \\
& x^{2}-2 x-8=0 \\
&(x-4)(x+2)=0 \\
& x=4 \text { or } x=-2 \\
& \text { A graph of } y=3^{\left(x^{2}\right)}-9^{x+4} \text { has } \\
& x \text {-intercepts }-2 \text { and } 4 .
\end{aligned}
$$

16. For what values of k does the equation $9^{\left(x^{2}\right)}=27^{x+k}$ have no real solution?

$$
\begin{aligned}
9^{\left(x^{2}\right)} & =27^{x+k} \\
3^{\left(2 x^{2}\right)} & =3^{3(x+k)} \\
2 x^{2} & =3 x+3 k
\end{aligned}
$$

$$
2 x^{2}-3 x-3 k=0
$$

For no real roots, the discriminant is less than 0 .

$$
\begin{aligned}
(-3)^{2}-4(2)(-3 k) & <0 \\
(-3)^{2} & <4(2)(-3 k) \\
9 & <-24 k \\
k & <-\frac{9}{24}, \text { or }-\frac{3}{8}
\end{aligned}
$$

The equation has no real solution when $k<-\frac{3}{8}$.

