Lesson 5.3 Exercises, pages 364–368

Α

3. Write each number as a power of 2.

a) 16	b) 128	c) $\frac{1}{32}$	d) 1
= 2 ⁴	= 2 ⁷	= 2 ⁻⁵	= 2 ⁰

4. Which numbers below can be written as powers of 5? Write each number you identify as a power of 5.

a) 125	b) 10	c) $\frac{1}{25}$	d) 1
= 5 ³	cannot be written as a power of 5	= 5 ⁻²	= 5 [°]

5. Write each number as a power of 3.

a) $\sqrt[3]{9}$	b) $\sqrt{243}$	c) $\frac{\sqrt{3}}{3}$	d) 27√3
$= 9^{\frac{1}{3}}$	$= 243^{\frac{1}{2}}$	$= 3^{\frac{1}{2}} \cdot 3^{-1}$	$= 3^3 \cdot 3^{\frac{1}{2}}$
$= (3^2)^{\frac{1}{3}}$	$= (3^5)^{\frac{1}{2}}$	$= 3^{\frac{1}{2}-1}$	$= 3^{3+\frac{1}{2}}$
$= 3^{\frac{2}{3}}$	$= 3^{\frac{5}{2}}$	$= 3^{-\frac{1}{2}}$	$= 3^{\frac{7}{2}}$

В

6. Solve each equation.

a) $2^x = 256$	b) 81 = 3^{x+1}
$2^{x} = 2^{8}$	$3^4 = 3^{x+1}$
x = 8	4 = x + 1
	<i>x</i> = 3

c) $3^{x} = 9^{x-2}$ $3^{x} = (3^{2})^{x-2}$ x = 2(x-2) x = 2x - 4 x = 4d) $4^{x-1} = 2^{x+3}$ $(2^{2})^{x-1} = 2^{x+3}$ 2(x - 1) = x + 3x = 5

e)
$$8^{2x} = 16^{x+3}$$

(2^3)^{2x} = (2^4)^{x+3}
3($2x$) = 4(x + 3)
 $6x = 4x + 12$
 $2x = 12$
 $x = 6$
f) $9^{x+1} = 243^{x+3}$
(3^2)^{x+1} = (3^5)^{x+3}
 $2(x + 1) = 5(x + 3)$
 $2x + 2 = 5x + 15$
 $-3x = 13$
 $x = -\frac{13}{3}$

7. Use graphing technology to solve each equation. Give the solution to the nearest tenth.

a) $10 = 2^x$ **b**) $3^x = 100$ Graph: $y = 2^{x} - 10$ Graph: $y = 100 - 3^{x}$ The approximate zero is The approximate zero is 4.1918065 3.3219281 *x* = 4.2 *x* = 3.3 c) $3^{x+1} = 50$ **d**) 30 = 2^{x-1} Graph: $y = 2^{x-1} - 30$ Graph: $y = 50 - 3^{x+1}$ The approximate zero is The approximate zero is 5.9068906 2.5608768 *x* = 5.9 *x* = 2.6

8. Explain why the equation $4^x = -2$ does not have a real solution. Verify, graphically, that there is no solution.

The value of a power with a positive base can never be negative, so the equation does not have a real solution. When I graph $y = -2 - 4^x$, the graph does not have an *x*-intercept.

9. Solve each equation.

a) $2^{x} = 8\sqrt[3]{2}$	b) $81\sqrt{3} = 3^{x}$
$2^{x} = 2^{3} \cdot 2^{\frac{1}{3}}$	$3^{4} \cdot 3^{\frac{1}{2}} = 3^{x}$
$2^{x} = 2^{3+\frac{1}{3}}$	$3^{4+\frac{1}{2}} = 3^{x}$
$x = 3 + \frac{1}{3}$	$4 + \frac{1}{2} = x$
$x = \frac{10}{3}$	$x = \frac{9}{2}$
c) $2^{x+1} = 2\sqrt[3]{4}$ $2^{x+1} = 2 \cdot 4^{\frac{1}{3}}$ $2^{x+1} = 2(2^2)^{\frac{1}{3}}$ $2^{x+1} = 2^1 \cdot 2^{\frac{2}{3}}$ $2^{x+1} = 2^{1+\frac{2}{3}}$ $x + 1 = 1 + \frac{2}{3}$ $x = \frac{2}{3}$	d) $9^{x} = \sqrt{27}$ $(3^{2})^{x} = (3^{3})^{\frac{1}{2}}$ $2x = \frac{3}{2}$ $x = \frac{3}{4}$
e) $\sqrt[4]{216} = 36^{x-1}$	f) $(\sqrt{7})^{x+1} = \sqrt[3]{49}$
$216^{\frac{1}{4}} = 6^{2(x-1)}$	$7^{\frac{1}{2}(x+1)} = (7^2)^{\frac{1}{3}}$
$(6^3)^{\frac{1}{4}} = 6^{2(x-1)}$	$\frac{1}{2}x + \frac{1}{2} = \frac{2}{3}$
$\frac{3}{4} = 2x - 2$	3x + 3 = 4
$2x = \frac{11}{4}$	3x = 1
$x = \frac{11}{8}$	$x = \frac{1}{3}$

10. Solve each equation.

b) $5^x = \frac{\sqrt[3]{25}}{25}$ **a**) $\left(\frac{1}{4}\right)^3 = 2^x$ $(2^{-2})^3 = 2^x$ (-2)(3) = x $5^{x} = (5^{2})^{\frac{1}{3}} \cdot 5^{-2}$ $5^x = 5^{\frac{2}{3}-2}$ x = -6 $x = \frac{2}{3} - 2$ $x = -\frac{4}{2}$ c) $\frac{\sqrt[3]{49}}{343} = 7^{x+1}$ **d**) $\left(\frac{1}{9}\right)^x = 3\sqrt{27}$ $(7^2)^{\frac{1}{3}} \cdot 7^{-3} = 7^{x+1}$ $(3^{-2})^x = 3^1 \cdot (3^3)^{\frac{1}{2}}$ $7^{\frac{2}{3}-3} = 7^{x+1}$ $3^{-2x} = 3^{1+\frac{3}{2}}$ $\frac{2}{3} - 3 = x + 1$ $-2x = 1 + \frac{3}{2}$ $-\frac{7}{3} = x + 1$ $-2x = \frac{5}{2}$ $x = -\frac{5}{4}$ $x = -\frac{10}{3}$ **e**) $8^{1-x} = \frac{\sqrt[3]{16}}{4}$ $\mathbf{f}) \, \left(\frac{1}{8}\right)^{x+1} = \left(\sqrt[3]{16}\right)^x$ $2^{3(1-x)} = (2^4)^{\frac{1}{3}} \cdot 2^{-2}$ $(2^{-3})^{x+1} = ((2^4)^{\frac{1}{3}})^x$

$$2^{3(1-x)} = 2^{\frac{4}{3}-2} - 3x - 3 = \frac{4}{3}x$$

$$3 - 3x = \frac{4}{3} - 2 - \frac{13}{3}x = 3$$

$$-3x = -\frac{11}{3} x = -\frac{9}{13}$$

$$x = \frac{11}{9}$$

- **11.** Use graphing technology to solve each equation. Give the solution to the nearest tenth.
 - **b**) $2^{-\frac{x}{5}} = 0.4$ **a)** $2 = 1.05^{x}$ Graph: $y = 0.4 - 2^{-\frac{x}{5}}$ Graph: $y = 1.05^{x} - 2$ The approximate zero is 6.6096405 The approximate zero is 14.206699 *x* = 6.6 *x* = 14.2 c) $2^{x+1} = 3^{x-2}$ **d**) $3(2^x) = 64$ Graph: $y = 3^{x-2} - 2^{x+1}$ Graph: $y = 64 - 3(2^{x})$ The approximate zero is The approximate zero is 4.4150375 7.1285339 *x* = 4.4 *x* = 7.1

12. A principal of \$600 was invested in a term deposit that pays 5.5% annual interest, compounded semi-annually. To the nearest tenth of a year, when will the amount be \$1000?

Use:
$$A = A_0 \left(1 + \frac{i}{n}\right)^{nt}$$
 Substitute: $A = 1000, A_0 = 600, i = 0.055, n = 2$
 $1000 = 600 \left(1 + \frac{0.055}{2}\right)^{2t}$
Graph $y = 600 \left(1 + \frac{0.055}{2}\right)^{2t} - 1000$, then determine the zero of the function.
The approximate zero is 9.4148676
It will take approximately 9.4 years for the term deposit to amount to \$1000.

13. a) To the nearest year, how long will it take an investment of \$500 to double at each annual interest rate, compounded annually?

i) 4% ii) 6%	iii) 8%
iv) 9% v) 12%	
\ " /	Ite: $A = 1000, A_0 = 500, n = 1$
$1000 = 500 \left(1 + \frac{i}{1}\right)^{1t}$	
$2 = (1 + i)^t$ Use thi	s expression below.
i) Substitute: <i>i</i> = 0.04	ii) Substitute: $i = 0.06$
$2 = (1 + 0.04)^{t}$	$2 = (1 + 0.06)^{t}$
$2 = 1.04^{t}$	$2 = 1.06^{t}$
Graph $y = 1.04^{t} - 2$,	Graph: $y = 1.06^{t} - 2$
then determine the zero of the	11 A A A A A A A A A A A A A A A A A A
function.	11.895661
The approximate zero is: 17.67 It will take approximately	72988 It will take approximately 12 years.
18 years.	rz years.
	(i) Substitutes $i = 0.00$
iii) Substitute: $i = 0.08$ 2 = $(1 + 0.08)^t$	iv) Substitute: $i = 0.09$ 2 = (1 + 0.09) ^t
2 = (1 + 0.08) $2 = 1.08^{t}$	2 = (1 + 0.05) $2 = 1.09^{t}$
Graph: $y = 1.08^{t} - 2$	Graph: $y = 1.09^t - 2$
The approximate zero is: 9.000	
It will take approximately 9 ye	
v) Substitute: $i = 0.12$ $2 = (1 + 0.12)^{t}$ $2 = 1.12^{t}$ Graph: $y = 1.12^{t} - 2$ The approximate zero is: 6.116 It will take approximately 6 ye	52554

b) What pattern is there in the interest rates and times in part a?

The product of each interest rate as a percent and time in years is 72.

- **14.** When light passes through glass, the intensity is reduced by 5%.
 - **a**) Determine a function that models the percent of light, *P*, that passes through *n* layers of glass.

```
For 0 layers of glass, the percent of light is: P = 100
For 1 layer of glass, the percent of light is: P = 100(0.95)
For 2 layers of glass, the percent of light is: P = 100(0.95)^2
For 3 layers of glass, the percent of light is: P = 100(0.95)^3
For n layers of glass, the percent of light is: P = 100(0.95)^3
```

b) Determine how many layers of glass are needed for only 25% of light to pass through.

Solve the equation: $25 = 100(0.95)^n$ Graph a related function: $y = 100(0.95)^x - 25$ The approximate zero of the function is: 27.026815 So, 27 layers of glass are needed.

С

15. Solve each equation, then verify the solution graphically.

a) $2^{(x^2)} = 16$ $2^{(x^2)} = 2^4$ $x^2 = 4$ $x = \pm 2$ The graph of $y = 16 - 2^{(x^2)}$ has x-intercepts 2 and -2. b) $9^{x+4} = 3^{(x^2)}$ $2x + 8 = x^2$ $x^2 - 2x - 8 = 0$ (x - 4)(x + 2) = 0 x = 4 or x = -2A graph of $y = 3^{(x^2)} - 9^{x+4}$ has x-intercepts -2 and 4.

16. For what values of *k* does the equation $9^{(x^2)} = 27^{x+k}$ have no real solution?

 $9^{(x^{2})} = 27^{x+k}$ $3^{(2x^{2})} = 3^{3(x+k)}$ $2x^{2} = 3x + 3k$ $2x^{2} - 3x - 3k = 0$ For no real roots, the discriminant is less than 0. $(-3)^{2} - 4(2)(-3k) < 0$ $(-3)^{2} < 4(2)(-3k)$ 9 < -24k $k < -\frac{9}{24}, \text{ or } -\frac{3}{8}$

The equation has no real solution when $k < -\frac{3}{8}$