Lesson 5.4 Exercises, pages 381-385

A

4. Evaluate each logarithm.
a) $\log _{4} 16$

$$
\begin{aligned}
& =\log _{4} 4^{2} \\
& =2
\end{aligned}
$$

b) $\log 100000$
$=\log _{10} 10^{5}$
$=5$
c) $\log _{6} 1296$
d) $\log _{2} 2$
$=\log _{6} 6^{4}$
$=1$
$=4$
5. Write each exponential expression as a logarithmic expression.
a) $2^{6}=64$
b) $10^{4}=10000$

The base is 2 .
The logarithm is 6 .
So, $6=\log _{2} 64$
The base is 10 .
The logarithm is 4 .
So, $4=\log 10000$
c) $4^{-\frac{1}{2}}=\frac{1}{2}$
d) $3^{\frac{2}{3}}=\sqrt[3]{9}$

The base is 4 .
The logarithm is $-\frac{1}{2}$.
The base is 3 .
The logarithm is $\frac{2}{3}$.
So, $-\frac{1}{2}=\log _{4}\left(\frac{1}{2}\right)$
So, $\frac{2}{3}=\log _{3} \sqrt[3]{9}$
6. a) Write each logarithmic expression as an exponential expression.
i) $\log _{7} 16807=5$
ii) $\log _{9} 3=\frac{1}{2}$
The base is 7 .
The exponent is 5 .
The base is 9 .
The exponent is $\frac{1}{2}$.
So, $16807=7^{5}$
So, $3=9^{\frac{1}{2}}$
iii) $\log 0.01=-2$

The base is 10 .
The exponent is -2 .
So, $0.01=10^{-2}$
iv) $\log _{3}\left(\frac{\sqrt{3}}{3}\right)=-\frac{1}{2}$

The base is 3 .
The exponent is $-\frac{1}{2}$.
So, $\frac{\sqrt{3}}{3}=3^{-\frac{1}{2}}$
b) Use one pair of statements from part a to explain the relationship between a logarithmic expression and an exponential expression.
Sample response: I start with this logarithmic expression: $\log _{7} 16807=5$. The logarithm of a number is the power to which the base of the logarithm is raised to get the number. So, the logarithm base 7 of 16807 is the power to which I raise 7 to get 16807 , which is 5 . That is, $16807=7^{5}$, which is the equivalent exponential expression.

B
7. Evaluate each logarithm.
a) $\log _{4} 8$
b) $\log _{9}\left(\frac{1}{27}\right)$

$$
\begin{aligned}
& =\log _{4}\left(2^{3}\right) \\
& =\log _{4}\left(4^{\frac{1}{2}}\right)^{3} \\
& =\log _{4} 4^{\frac{3}{2}} \\
& =\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\log _{9} 3^{-3} \\
& =\log _{9}\left(9^{\frac{1}{2}}\right)^{-3} \\
& =\log _{9}\left(9^{-\frac{3}{2}}\right) \\
& =-\frac{3}{2}
\end{aligned}
$$

c) $\log _{6} 1$
d) $\log _{2}(4 \sqrt[4]{2})$
$=\log _{2}\left(2^{2} \cdot 2^{\frac{1}{4}}\right)$
$=\log _{2}\left(2^{\frac{9}{4}}\right)$
$=\frac{9}{4}$
8. a) Write 3 as a logarithm with base 2 .

$$
\text { Use: } \begin{aligned}
n & =\log _{b} b^{n} \\
3 & =\log _{2} 2^{3} \\
\text { So, } 3 & =\log _{2} 8
\end{aligned}
$$

b) Write 2 as a logarithm with base 3 .

$$
\text { Use: } \begin{aligned}
n & =\log _{b} b^{n} \\
2 & =\log _{3} 3^{2} \\
\text { So, } 2 & =\log _{3} 9
\end{aligned}
$$

9. Determine the value of $\log _{b} 1$. Justify the answer.
$\log _{b} 1$ is the exponent of base b, when b is raised to a power and the result is 1 . The only way to get 1 is to raise the base to the power 0 . So, $\log _{b} 1=0$
10. How are the domain and range of the functions $y=b^{x}$ and $y=\log _{b} x$ related?

Since the functions $y=b^{x}$ and $y=\log _{b} x$ are inverse functions, the domain of $y=b^{x}$ is the range of $y=\log _{b} x$, and the range of $y=b^{x}$ is the domain of $y=\log _{b} x$.
11. a) Use a table of values to graph $y=\log _{5} x$.

Determine values for $y=5^{x}$, then interchange the coordinates for the table of values for $y=\log _{5} x$.

x	$y=\log _{5} x$
$\frac{1}{5}$	-1
1	0
5	1
25	2

2^{y}				$y=\log _{5} x$			
0		4	8	12	16		
2							20

b) Identify the intercepts, the equation of the asymptote, the domain, and the range of the function.

The graph does not intersect the y-axis, so it does not have a y-intercept.
The graph has x-intercept 1 .
The y-axis is a vertical asymptote; its equation is $x=0$.
The domain of the function is $x>0$.
The range of the function is $y \in \mathbb{R}$.
c) What is the significance of the asymptote?

The asymptote signifies that the logarithm of any positive number very close to 0 exists, but the logarithm of 0 does not exist. The graph approaches the line $x=0$ but never intersects it.
12. a) Use technology to graph $y=\log x$. Identify the intercepts, the equation of the asymptote, the domain, and the range of the function.

On the $Y=$ screen, input $Y_{1}=\log (X)$, then press: GRAPH. From the table of values, or the CALC feature, there is no y-intercept, the x-intercept is 1 , and the equation of the asymptote is $x=0$. The domain is $x>0$; the range is $y \in \mathbb{R}$.
b) What is the equation of the inverse of $y=\log x$?
$y=\log x$ can be written $y=\log _{10} x$.
Interchange x and y, then solve for y.
$x=\log _{10} y \quad$ Write the equivalent exponential statement.
$y=10^{x}$
13. Use benchmarks to estimate the value of each logarithm, to the nearest tenth.
a) $\log _{3} 12$

Identify powers of 3 close to 12.
$3^{2}=9$ and $3^{3}=27$
$\log _{3} 3^{2}<\log _{3} 12<\log _{3} 3^{3}$
So, $2<\log _{3} 12<3$
An estimate is: $\log _{3} 12 \doteq 2.2$
Check.
$3^{2.2} \doteq 11.21157846$
$3^{2.3} \doteq 12.51350253$
So, $\log _{3} 12 \doteq 2.3$
b) $\log _{2} 100$

Identify powers of 2 close to 100 .
$2^{6}=64$ and $2^{7}=128$
$\log _{2} 2^{6}<\log _{2} 100<\log _{2} 2^{7}$
So, $6<\log _{2} 100<7$
An estimate is: $\log _{2} 100 \doteq 6.6$
Check.
$2^{6.6} \doteq 97.00586026$
$2^{6.7} \doteq 103.9683067$
So, $\log _{2} 100 \doteq 6.6$
14. Write the equations of an exponential function and a logarithmic function with the same base. Use graphs of these functions to demonstrate that each function is the inverse of the other.

Sample response: Here are the tables of values and graphs of $y=8^{x}$ and $y=\log _{8} x$. Plot the points, then join them with smooth curves.

x	$y=8^{x}$
-1	0.125
0	1
1	8

x	$y=\log _{8} x$
0.125	-1
1	0
8	1

From the table, the functions are inverses because the coordinates of corresponding

| 8 | y | | | | | | \prime |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 6 | | | | | | | points are interchanged.

From the graph, the functions are inverses because their graphs are reflections of each other in the line $y=x$.
15. Use benchmarks to estimate the value of each logarithm to the nearest tenth.
a) $\log _{2} 6.5$
Identify powers of 2
close to 6.5 .
$2^{2}=4$ and $2^{3}=8$
So, $2<\log _{2} 6.5<3$
An estimate is: $\log _{2} 6.5 \doteq 2.7$
Check.
$2^{2.7} \doteq 6.498019171$
$2^{2.8} \doteq 6.964404506$
So, $\log _{2} 6.5 \doteq 2.7$
b) $\log _{3} 1.8$

Identify powers of 3 close to 1.8 .
$3^{0}=1$ and $3^{1}=3$
So, $0<\log _{3} 1.8<1$
An estimate is:
$\log _{3} 1.8 \doteq 0.6$
Check.
$3^{0.6} \doteq 1.933182045$
$3^{0.5}=1.732050808$
So, $\log _{3} 1.8 \doteq 0.5$

C
16. Graph $y=\log _{\frac{1}{2}} x$. How is the graph of this function related to the graph of $y=\log _{2} x$?

Make a table of values for $y=\left(\frac{1}{2}\right)^{x}$, then interchange the coordinates for $y=\log _{\frac{1}{2} x} x$. Plot the points, then join them with a smooth curve.

\boldsymbol{X}	$y=\left(\frac{1}{2}\right)^{x}$	\boldsymbol{X}	$y=\log _{\frac{1}{2}} x$
-3	8	8	-3
		4	-2
-2	4		
-1	2	2	-1
0	1	1	0
1	05	0.5	1
2	0.5	0.25	2
2	0.25		

I looked at the graph of $y=\log _{2} x$ that I drew on page 375 .
The graph of $y=\log _{\frac{1}{2}} x$ is the reflection of the graph of $y=\log _{2} x$ in the x-axis.
17. On a graphing calculator, the key $L N$ calculates the value of a logarithm whose base is the irrational number e. The number e is known as Euler's constant. Logarithms with base e are called natural logarithms.
a) Graph $y=\ln x$. Sketch the graph.

Input: $\mathrm{Y}_{1}=\boxed{L D}(\mathrm{X})$, then press: GRAPH

b) Determine the value of e to the nearest thousandth.

When $y=1, \log _{e} x=1$, so $x=e^{1}$, or $x=e$
On the screen in part a, graph $Y_{2}=1$, then determine the approximate x-coordinate of the point of intersection: 2.7182818
The value of e is approximately 2.718 .

