Lesson 5.6 Exercises, pages 405-410

A

3. Approximate the value of each logarithm, to the nearest thousandth.
a) $\log _{2} 9$
b) $\log _{2} 100$

Use the change of base formula to change the base of the logarithms to base 10.

$$
\begin{aligned}
\log _{2} 9 & =\frac{\log 9}{\log 2} & \log _{2} 100 & =\frac{\log 100}{\log 2} \\
& =3.1699 \ldots & & =6.6438 \ldots \\
& =3.170 & & =6.644
\end{aligned}
$$

4. Order these logarithms from greatest to least:
$\log _{2} 80, \log _{3} 900, \log _{4} 5000, \log _{5} 10000$
Write each logarithm to base 10 , then calculate its value.

$\log _{2} 80$	$\log _{3} 900$	$\log _{4} 5000$	$\log _{5} 10000$
$=\frac{\log 80}{\log 2}$	$=\frac{\log 900}{\log 3}$	$=\frac{\log 5000}{\log 4}$	$=\frac{\log 10000}{\log 5}$
$=6.3219 \ldots$	$=6.1918 \ldots$	$=6.1438 \ldots$	$=5.7227 \ldots$

From greatest to least: $\log _{2} 80, \log _{3} 900, \log _{4} 5000, \log _{5} 10000$
5. Approximate the value of each logarithm, to the nearest thousandth. Write the related exponential expression.
a) $\log _{7} 400$
b) $\log _{3}\left(\frac{1}{2}\right)$
$\log _{7} 400=\frac{\log 400}{\log 7}$
$\log _{3}\left(\frac{1}{2}\right)=\frac{\log 0.5}{\log 3}$
$=-0.6309 .$.
$\doteq-0.631$
So, $400 \doteq 7^{3.079}$
So, $\frac{1}{2} \doteq 3^{-0.631}$
6. a) Use technology to graph $y=\log _{5} x$. Sketch the graph.

$$
\text { Graph: } y=\frac{\log x}{\log 5}
$$

b) Identify the intercepts and the equation of the asymptote of the graph, and the domain and range of the function.

From the graph, the x-intercept is 1 . There is no y-intercept. The equation of the asymptote is $x=0$. The domain of the function is $x>0$. The range of the function is $y \in \mathbb{R}$.
c) Choose the coordinates of two points on the graph. Multiply their x-coordinates and add their y-coordinates. What do you notice about the new coordinates? Explain the result.
From the TABLE, two points on the graph have coordinates:
$(5,1)$ and $(25,2)$
The product of the x-coordinates is 125 . The sum of the y-coordinates is 3 .
The new coordinates are $(125,3)$, which is also a point on the graph.
The logarithm of the product of two numbers is the sum of the logarithms of the numbers.
7. a) Use a graphing calculator to graph $y=\log _{2} x, y=\log _{4} x$, and $y=\log _{8} x$. Sketch the graphs.

$$
\text { Graph: } y=\frac{\log x}{\log 2}, y=\frac{\log x}{\log 4}, \text { and } y=\frac{\log x}{\log 8}
$$

b) In part a, what happened to the graph of $y=\log _{b} x, b>0$, $b \neq 1$, as the base changed?

As b increases, from $b=2$, the graph of $y=\log _{b} x$ is compressed vertically by a factor of: $\frac{\frac{\log x}{\log b}}{\log x}=\frac{\log 2}{\log b}$.
$\overline{\log 2}$
8. a) The graphs of a logarithmic function and its transformation image are shown. The functions are related by translations, and corresponding points are indicated. Identify the translations.

From A to A^{\prime}, the translations are
3 units left and 1 unit up.
The same translations relate B and B^{\prime}.

b) Given that $f(x)=\log _{2} x$, what is $g(x)$? Justify your answer.

After translations, the image of the graph of $y=\log _{2} x$ has equation:
$y-k=\log _{2}(x-h) \quad$ Substitute: $k=1$ and $h=-3$
The image graph has equation $y-1=\log _{2}(x+3)$; or
$y=\log _{2}(x+3)+1$
So, $g(x)=\log _{2}(x+3)+1$
9. a) How is the graph of $y=2 \log _{2}(2 x-8)$ related to the graph of $y=\log _{2} x$? Sketch both graphs on the same grid.

Compare $y=2 \log _{2} 2(x-4)$ with $y-k=c \log _{2} d(x-h)$:
$k=0, c=2, d=2$, and $h=4$
Write $y=2 \log _{2}(2 x-8)$ as $y=2 \log _{2} 2(x-4)$. The graph of this function is the image of the graph of $y=\log _{2} x$ after a vertical stretch by a factor of 2 , a horizontal compression by a factor of $\frac{1}{2}$, then a translation of 4 units right.
Use the general transformation: (x, y) corresponds to $\left(\frac{x}{d}+h, c y+k\right)$
The point (x, y) on $y=\log _{2} x$ corresponds to the point $\left(\frac{x}{2}+4,2 y\right)$ on $y=2 \log _{2} 2(x-4)$.

(x, y)	$\left(\frac{x}{2}+4,2 y\right)$
$(0.5,-1)$	$(4.25,-2)$
$(1,0)$	$(4.5,0)$
$(2,1)$	$(5,2)$
$(4,2)$	$(6,4)$
$(8,3)$	$(8,6)$

b) Identify the intercepts and the equation of the asymptote of the graph of $y=2 \log _{2}(2 x-8)$, and the domain and range of the function. Use graphing technology to verify.

From the graph, there is no y-intercept.
From the table, the x-intercept is 4.5 .
The equation of the asymptote is $x=4$.
The domain of the function is $x>4$.
The range of the function is $y \in \mathbb{R}$.
10. a) Graph $y=-\frac{1}{4} \log _{2}\left(\frac{1}{2} x\right)+1$.

Compare $y-1=-\frac{1}{4} \log _{2}\left(\frac{1}{2} x\right)$
with $y-k=c \log _{2} d(x-h)$:
$k=1, c=-\frac{1}{4}, d=\frac{1}{2}$, and $h=0$
Use the general transformation:

(x, y) corresponds to $\left(\frac{x}{d}+h, c y+k\right)$
The point (x, y) on $y=\log _{2} x$ corresponds to the point $\left(2 x,-\frac{1}{4} y+1\right)$
on $y=-\frac{1}{4} \log _{2}\left(\frac{1}{2} x\right)+1$.

(x, y)	$\left(2 x,-\frac{1}{4} y+1\right)$
$(0.25,-2)$	$(0.5,1.5)$
$(0.5,-1)$	$(1,1.25)$
$(1,0)$	$(2,1)$
$(2,1)$	$(4,0.75)$
$(4,2)$	$(8,0.5)$

b) Identify the intercepts and the equation of the asymptote of the graph of $y=-\frac{1}{4} \log _{2}\left(\frac{1}{2} x\right)+1$, and the domain and range of the function.

From the graph, there is no y-intercept.
Use the TABLE feature on a graphing calculator; the x-intercept is 32 .
The equation of the asymptote is $x=0$.
The domain of the function is $x>0$.
The range of the function is $y \in \mathbb{R}$.
11. Graph each function below, then identify the intercepts and the equation of the asymptote of the graph, and the domain and range of the function.
a) $y=-\log _{2}(x+4)-3$

Compare $y+3=-\log _{2}(x+4)$ with $y-k=c \log _{2} d(x-h)$:
$k=-3, c=-1, d=1$, and $h=-4$
Use the general transformation: (x, y) corresponds to $\left(\frac{x}{d}+h, c y+k\right)$
The point (x, y) on $y=\log _{2} x$ corresponds to the
point $(x-4,-y-3)$ on $y=-\log _{2}(x+4)-3$.

(x, y)	$(x-4,-y-3)$
$(0.25,-2)$	$(-3.75,-1)$
$(0.5,-1)$	$(-3.5,-2)$
$(1,0)$	$(-3,-3)$
$(2,1)$	$(-2,-4)$
$(4,2)$	$(0,-5)$
$(8,3)$	$(4,-6)$

From the graph, the x-intercept is approximately -3.9 .
From the table, the y-intercept is $\mathbf{- 5}$.
The equation of the asymptote is $x=-4$.
The domain of the function is $x>-4$.
The range of the function is $y \in \mathbb{R}$.
b) $y=4 \log _{2}(-x-3)$

Write $y=4 \log _{2}(-x-3)$ as $y=4 \log _{2}[-(x+3)]$.
Compare $y=4 \log _{2}[-(x+3)]$ with $y-k=c \log _{2} d(x-h)$:
$k=0, c=4, d=-1$, and $h=-3$
$k=0, c=4, d=-1$, and $h=-3$
Use the general transformation: (x, y) corresponds to $\left(\frac{x}{d}+h, c y+k\right)$
The point (x, y) on $y=\log _{2} x$ corresponds to the point $(-x-3,4 y$) on $y=4 \log _{2}(-x-3)$.

(x, y)	$(-x-3,4 y)$
$(0.25,-2)$	$(-3.25,-8)$
$(0.5,-1)$	$(-3.5,-4)$
$(1,0)$	$(-4,0)$
$(2,1)$	$(-5,4)$
$(4,2)$	$(-7,8)$

From the table, the x-intercept is -4 .
From the graph, there is no y-intercept.
The equation of the asymptote is $x=-3$.
The domain of the function is $x<-3$.
The range of the function is $y \in \mathbb{R}$.
12. Graph the function $y=-\frac{1}{3} \log _{3}(-2 x-4)+5$, then identify the intercepts, the equation of the asymptote, and the domain and range of the function.

Write $y=-\frac{1}{3} \log _{3}(-2 x-4)+5$ as $y-5=-\frac{1}{3} \log _{3}[-2(x+2)]$.
Compare $y-5=-\frac{1}{3} \log _{3}[-2(x+2)]$ with $y-k=c \log _{3} d(x-h)$:
$k=5, c=-\frac{1}{3}, d=-2$, and $h=-2$
Use the general transformation: (x, y) corresponds to $\left(\frac{x}{d}+h, c y+k\right)$
The point (x, y) on $y=\log _{3} x$ corresponds to the point

$\left(-\frac{1}{2} x-2,-\frac{1}{3} y+5\right)$ on $y=-\frac{1}{3} \log _{3}(-2 x-4)+5$.
To determine the x-intercept, solve the equation:

(x, y)	$\left(-\frac{1}{2} x-2,-\frac{1}{3} y+5\right)$
$\left(\frac{1}{9},-2\right)$	$\left(-\frac{37}{18}, \frac{17}{3}\right)$
$\left(\frac{1}{3},-1\right)$	$\left(-\frac{13}{6}, \frac{16}{3}\right)$
$(1,0)$	$\left(-\frac{5}{2}, 5\right)$
$(3,1)$	$\left(-\frac{7}{2}, \frac{14}{3}\right)$
$(9,2)$	$\left(-\frac{13}{2}, \frac{13}{3}\right)$

$$
\begin{aligned}
0 & =-\frac{1}{3} \log _{3}(-2 x-4)+5 \\
-5 & =-\frac{1}{3} \log _{3}(-2 x-4) \\
15 & =\log _{3}(-2 x-4) \quad \text { Write in exponential form. } \\
-2 x-4 & =3^{15} \\
-2 x & =14348911 \\
x & =-7174455.5
\end{aligned}
$$

