Lesson 5.6 Exercises, pages 405–410

Α

- **3.** Approximate the value of each logarithm, to the nearest thousandth.
 - a) $\log_2 9$

b) log₂100 Use the change of base formula to change the base of the logarithms to

base 10.	
$\log_2 9 = \frac{\log 9}{\log 2}$	$\log_2 100 = \frac{\log 100}{\log 2}$
= 3.1699	= 6.6438
≐ 3.170	≐ 6.644

4. Order these logarithms from greatest to least: log₂80, log₃900, log₄5000, log₅10 000

Write each logarithm to base 10, then calculate its value.

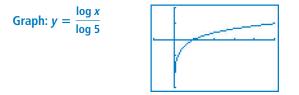
log₂80	log₃900	log₄5000	log₅10 000
log 80	log 900	log 5000	_ log 10 000
log 2	log 3	= log 4	= <u>log 5</u>
= 6.3219	= 6.1918	= 6.1438	= 5.7227

From greatest to least: log₂80, log₃900, log₄5000, log₅10 000

- **5.** Approximate the value of each logarithm, to the nearest thousandth. Write the related exponential expression.
 - a) $\log_7 400$ b) $\log_3\left(\frac{1}{2}\right)$ $\log_7 400 = \frac{\log 400}{\log 7}$ = 3.0790... $\doteq 3.079$ So, $400 \doteq 7^{3.079}$ b) $\log_3\left(\frac{1}{2}\right) = \frac{\log 0.5}{\log 3}$ = -0.6309... $\doteq -0.631$ So, $\frac{1}{2} \doteq 3^{-0.631}$

В

6. a) Use technology to graph $y = \log_5 x$. Sketch the graph.



b) Identify the intercepts and the equation of the asymptote of the graph, and the domain and range of the function.

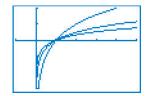
From the graph, the *x*-intercept is 1. There is no *y*-intercept. The equation of the asymptote is x = 0. The domain of the function is x > 0. The range of the function is $y \in \mathbb{R}$.

c) Choose the coordinates of two points on the graph. Multiply their *x*-coordinates and add their *y*-coordinates. What do you notice about the new coordinates? Explain the result.

From the TABLE, two points on the graph have coordinates: (5, 1) and (25, 2) The product of the *x*-coordinates is 125. The sum of the *y*-coordinates is 3. The new coordinates are (125, 3), which is also a point on the graph. The logarithm of the product of two numbers is the sum of the logarithms of the numbers.

7. a) Use a graphing calculator to graph $y = \log_2 x$, $y = \log_4 x$, and $y = \log_8 x$. Sketch the graphs.

Graph:
$$y = \frac{\log x}{\log 2}$$
, $y = \frac{\log x}{\log 4}$, and $y = \frac{\log x}{\log 8}$

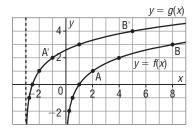


b) In part a, what happened to the graph of $y = \log_b x$, b > 0, $b \neq 1$, as the base changed?

As *b* increases, from b = 2, the graph of $y = \log_b x$ is compressed vertically by a factor of: $\frac{\frac{\log x}{\log b}}{\frac{\log x}{\log 2}} = \frac{\log 2}{\log b}$.

8. a) The graphs of a logarithmic function and its transformation image are shown. The functions are related by translations, and corresponding points are indicated. Identify the translations.

From A to A', the translations are 3 units left and 1 unit up. The same translations relate B and B'.



b) Given that $f(x) = \log_2 x$, what is g(x)? Justify your answer.

After translations, the image of the graph of $y = \log_2 x$ has equation: $y - k = \log_2(x - h)$ Substitute: k = 1 and h = -3The image graph has equation $y - 1 = \log_2(x + 3)$; or $y = \log_2(x + 3) + 1$ So, $g(x) = \log_2(x + 3) + 1$

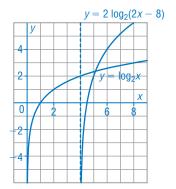
9. a) How is the graph of $y = 2 \log_2(2x - 8)$ related to the graph of $y = \log_2 x$? Sketch both graphs on the same grid.

Compare $y = 2 \log_2 2(x - 4)$ with $y - k = c \log_2 d(x - h)$: k = 0, c = 2, d = 2, and h = 4Write $y = 2 \log_2 (2x - 8)$ as $y = 2 \log_2 2(x - 4)$. The graph of this function is the image of the graph of $y = \log_2 x$ after a vertical stretch by a factor of 2, a horizontal compression by a factor of $\frac{1}{2}$, then a translation of 4 units right.

Use the general transformation: (*x*, *y*) corresponds to $\left(\frac{x}{d} + h, cy + k\right)$

The point (x, y) on $y = \log_2 x$ corresponds to the point $\left(\frac{x}{2} + 4, 2y\right)$ on $y = 2 \log_2 2(x - 4)$.

$\left(\frac{x}{2}+4,2y\right)$
(4.25, -2)
(4.5, 0)
(5, 2)
(6, 4)
(8, 6)



b) Identify the intercepts and the equation of the asymptote of the graph of $y = 2 \log_2(2x - 8)$, and the domain and range of the function. Use graphing technology to verify.

From the graph, there is no *y*-intercept. From the table, the *x*-intercept is 4.5. The equation of the asymptote is x = 4. The domain of the function is x > 4. The range of the function is $y \in \mathbb{R}$.

10. a) Graph
$$y = -\frac{1}{4} \log_2(\frac{1}{2}x) + 1$$
.
Compare $y - 1 = -\frac{1}{4} \log_2(\frac{1}{2}x)$
with $y - k = c \log_2 d(x - h)$:
 $k = 1, c = -\frac{1}{4}, d = \frac{1}{2}, \text{ and } h = 0$
Use the general transformation:
 (x, y) corresponds to $(\frac{x}{d} + h, cy + k)$
The point (x, y) on $y = \log_2 x$ corresponds to the point $(2x, -\frac{1}{4}y + 1)$
on $y = -\frac{1}{4} \log_2(\frac{1}{2}x) + 1$.

(x, y)	$\left(2x,-\frac{1}{4}y+1\right)$
(0.25, -2)	(0.5, 1.5)
(0.5, -1)	(1, 1.25)
(1, 0)	(2, 1)
(2, 1)	(4, 0.75)
(4, 2)	(8, 0.5)

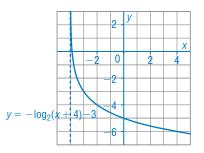
b) Identify the intercepts and the equation of the asymptote of the graph of $y = -\frac{1}{4} \log_2(\frac{1}{2}x) + 1$, and the domain and range of the function.

From the graph, there is no *y*-intercept. Use the TABLE feature on a graphing calculator; the *x*-intercept is 32. The equation of the asymptote is x = 0. The domain of the function is x > 0. The range of the function is $y \in \mathbb{R}$. **11.** Graph each function below, then identify the intercepts and the equation of the asymptote of the graph, and the domain and range of the function.

a)
$$y = -\log_2(x + 4) - 3$$

Compare $y + 3 = -\log_2(x + 4)$ with $y - k = c \log_2 d(x - h)$: k = -3, c = -1, d = 1, and h = -4Use the general transformation: (x, y) corresponds to $\left(\frac{x}{d} + h, cy + k\right)$ The point (x, y) on $y = \log_2 x$ corresponds to the point (x - 4, -y - 3) on $y = -\log_2(x + 4) - 3$.

(<i>x</i> , <i>y</i>)	(x - 4, -y - 3)
(0.25, -2)	(-3.75, -1)
(0.5, -1)	(-3.5, -2)
(1, 0)	(-3, -3)
(2, 1)	(-2, -4)
(4, 2)	(0, -5)
(8, 3)	(4, -6)



From the graph, the *x*-intercept is approximately -3.9. From the table, the *y*-intercept is -5. The equation of the asymptote is x = -4. The domain of the function is x > -4. The range of the function is $y \in \mathbb{R}$.

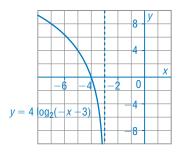
b)
$$y = 4 \log_2(-x - 3)$$

Write $y = 4 \log_2(-x - 3)$ as $y = 4 \log_2[-(x + 3)]$. Compare $y = 4 \log_2[-(x + 3)]$ with $y - k = c \log_2 d(x - h)$: k = 0, c = 4, d = -1, and h = -3Use the general transformation: (x, y) corresponds to $\left(\frac{x}{d} + h, cy + k\right)$

The point (x, y) on $y = \log_2 x$ corresponds to the point (-x - 3, 4y) on $y = 4 \log_2(-x - 3)$.

(<i>x</i> , <i>y</i>)	(-x - 3, 4y)
(0.25, -2)	(-3.25, -8)
(0.5, -1)	(-3.5, -4)
(1, 0)	(-4, 0)
(2, 1)	(-5, 4)
(4, 2)	(-7, 8)

From the table, the *x*-intercept is -4. From the graph, there is no *y*-intercept. The equation of the asymptote is x = -3. The domain of the function is x < -3. The range of the function is $y \in \mathbb{R}$.



12. Graph the function $y = -\frac{1}{3}\log_3(-2x - 4) + 5$, then identify the intercepts, the equation of the asymptote, and the domain and range of the function.

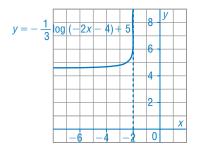
Write $y = -\frac{1}{3} \log_3(-2x - 4) + 5$ as $y - 5 = -\frac{1}{3} \log_3[-2(x + 2)]$. Compare $y - 5 = -\frac{1}{3} \log_3[-2(x + 2)]$ with $y - k = c \log_3 d(x - h)$: $k = 5, c = -\frac{1}{3}, d = -2$, and h = -2

Use the general transformation: (*x*, *y*) corresponds to $\left(\frac{x}{d} + h, cy + k\right)$

The point (x, y) on $y = \log_3 x$ corresponds to the point

С

$$\left(-\frac{1}{2}x-2,\ -\frac{1}{3}y+5\right)$$
 on $y=-\frac{1}{3}\log_3(-2x-4)+5.$



To determine the *x*-intercept, solve the equation

(x, y)	$\left(-\frac{1}{2}x-2,\ -\frac{1}{3}y+5\right)$
$\left(\frac{1}{9}, -2\right)$	$\left(-\frac{37}{18},\frac{17}{3}\right)$
$\left(\frac{1}{3'}-1\right)$	$\left(-\frac{13}{6},\frac{16}{3}\right)$
(1, 0)	$\left(-\frac{5}{2},5\right)$
(3, 1)	$\left(-\frac{7}{2'}\frac{14}{3}\right)$
(9, 2)	$\left(-\frac{13}{2},\frac{13}{3}\right)$

To determine the x-intercept, solve the equation:

$$0 = -\frac{1}{3} \log_3(-2x - 4) + 5$$

$$-5 = -\frac{1}{3} \log_3(-2x - 4)$$

$$15 = \log_3(-2x - 4)$$
Write in exponential form.

$$-2x - 4 = 3^{15}$$

$$-2x = 14 \ 348 \ 911$$

$$x = -7 \ 174 \ 455.5$$

From the graph, there is no *y*-intercept. The equation of the asymptote is x = -2. The domain of the function is x < -2. The range of the function is $y \in \mathbb{R}$.