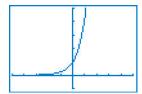

Checkpoint 1: Assess Your Understanding, pages 371–374

5.1


- **1.** Use technology to graph each function below. Sketch or print the graph. For each graph, identify its intercepts and the equation of its asymptote.
 - a) $y = 0.7^x$

There is no *x*-intercept.
The *y*-intercept is 1.

The equation of the asymptote is y = 0.

There is no *x*-intercept. The *y*-intercept is 1.

The equation of the asymptote is y = 0.

5.2

2. Multiple Choice Which equation describes a function whose graph can be obtained by compressing the graph of $y = 10^x$ horizontally by a factor of $\frac{1}{3}$, then translating the graph 2 units up?

$$(A)y - 2 = 10^{3x}$$

B.
$$y = 3(10^{x-2})$$

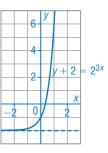
$$\mathbf{D.}y + 2 = 10^{\frac{x}{3}}$$

- **3.** Graph each exponential function below. Determine:
 - i) whether the function is increasing or decreasing
 - ii) the intercepts
 - iii) the equation of the asymptote
 - iv) the domain of the function
 - v) the range of the function

$$\mathbf{a)} \ y = \left(\frac{3}{4}\right)^x$$

Q	y		Ι
0			
6-			
Ŭ			
4-		1	
2-	/	, _	6 ^x
	/ /	_	X
n			X
	8-6-4-2-0	6-	6-

v	.,	
X	y	
-3	2.370	
-2	1.7	
-1	1.3	
0	1	
1	0.75	
2	0.5625	
3	0.421 875	


X	У
-2	0.027
-1	0.16
0	1
1	6
2	36

- i) The function is decreasing.
- ii) The graph has no x-intercept. Its y-intercept is 1.
- iii) The equation of the asymptote is y = 0.
- iv) The domain is: $x \in \mathbb{R}$
- v) The range is: y > 0

- i) The function is increasing.
- ii) The graph has no x-intercept. Its y-intercept is 1.
- iii) The equation of the asymptote is y = 0.
- iv) The domain is: $x \in \mathbb{R}$
- v) The range is: y > 0

4. a) Use transformations to sketch the graph of $y + 2 = 2^{3x}$.

Compare
$$y + 2 = 2^{3x}$$
 with $y - k = c2^{d(x-h)}$: $k = -2$, $c = 1$, $d = 3$, and $h = 0$
The graph of $y + 2 = 2^{3x}$ is the image of the graph of $y = 2^x$ after a horizontal compression by a factor of $\frac{1}{3}$, then a translation of 2 units down.
The point (x, y) on $y = 2^x$ corresponds to the point $\left(\frac{x}{3}, y - 2\right)$ on $y + 2 = 2^{3x}$.

(x, y)	$\left(\frac{x}{3}, y-2\right)$
(-3, 0.125)	(-1, -1.875)
(-1, 0.5)	$(-0.\overline{3}, -1.5)$
(0, 1)	(0, -1)
(1, 2)	$(0.\overline{3}, 0)$
(3, 8)	(1, 6)
(3, 8)	(1, 6)

- **b**) Determine:
 - i) whether the function is increasing or decreasing

The function is increasing.

ii) the intercepts

From the table, the *x*-intercept is $\frac{1}{3}$ and the *y*-intercept is -1.

iii) the equation of the asymptote

Since the translation is 2 units down, the horizontal asymptote has equation y = -2.

iv) the domain of the function

The domain is $x \in \mathbb{R}$.

v) the range of the function

The range is y > -2.

5.3

5. Multiple Choice Which equation has the solution x = -3?

A.
$$5^x = (\sqrt[3]{625})^{x+1}$$

B.
$$5^x = (\sqrt[3]{625})^{x-1}$$

C.
$$5^{x+1} = (\sqrt[3]{625})^x$$

$$(\mathbf{D})5^{x-1} = (\sqrt[3]{625})^x$$

6. Solve each equation.

a)
$$9^{x+2} = 27^x$$

$$\mathbf{b}) \left(\frac{1}{8}\right)^x = 4\sqrt{2}$$

$$3^{2(x+2)} = 3^{3x}$$

$$2^{-3x} = 2^2 \cdot 2^{\frac{1}{2}}$$

$$2x + 4 = 3x$$

$$2^{-3x} = 2^{2+\frac{1}{2}}$$

$$2x + 4 = 3x$$
$$x = 4$$

$$z = z$$

$$-3x = \frac{5}{2}$$
$$x = -\frac{5}{6}$$

7. Use graphing technology to solve each equation. Give the solution to the nearest tenth.

a)
$$2^x = 50$$

b)
$$4^{x-2} = 3^{x-1}$$

Graph:
$$y = 50 - 2^x$$

The approximate zero

Graph:
$$y = 3^{x-1} - 4^{x-2}$$

The approximate zero is

The approximate zero is 5.8188417

$$5.6438562$$
 $x = 5.6$

$$x \doteq 5.8$$

8. A principal of \$500 is invested in a savings account that pays 3.5% annual interest, compounded quarterly. To the nearest half year, when will the amount be \$700?

Use:
$$A = A_0 \left(1 + \frac{i}{n}\right)^{nt}$$

Use:
$$A = A_0 \left(1 + \frac{i}{n}\right)^{nt}$$
 Substitute: $A = 700$, $A_0 = 500$, $i = 0.035$, $n = 4$

$$700 = 500 \left(1 + \frac{0.035}{4}\right)^{4t}$$

Graph
$$y = 500 \left(1 + \frac{0.035}{4}\right)^{4t} - 700$$
, then determine the zero of the function.

The approximate zero is 9.6554904

It will take approximately 9.5 years for the investment to amount to \$700.