Checkpoint: Assess Your Understanding, pages 718-720

8.1

1. A garage door remote has 10 code switches. Each switch can be positioned up or down to create a wireless code. How many codes are possible?

Use a tree diagram.
Switch
1

2

For 10 switches, there are 2^{10} or 1024 possible codes.
2. Multiple Choice A restaurant offers a meal combo that consists of a beverage, a main course, and a dessert. There are 5 beverages, 6 main courses, and 4 desserts. How many meal combos are available?
A. 15
B. 30
C. 20
(D.) 120
3. Morse code uses arrangements of 5 characters to represent the digits 0 through 9 . Each character is either a dot or a dash.
How many arrangements of 5 characters are possible?

There are 5 characters.
There are 2 choices for each character: dot or dash

So, the number of arrangements of
5 characters is: $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32$
8.2
4. Multiple Choice How many 5-letter permutations of YUKON can be created?
A. 6
B. 24
C. 120
D. 3125
5. A family of six is to be seated in a row for a photo. The mother and father must be at either end. How many ways can the family be arranged?

There are 4 children. The number of ways to arrange 4 children is: $4!=24$ There are 2 ways to arrange the mother and father: MF and FM
So, the number of ways the family can be arranged is: $2 \cdot 24=48$
6. An under-10 house-league soccer team has 11 players. Seven players are on the field at a time. How many ways can 7 starters be chosen from the members of the team?
Use the formula: ${ }_{n} \mathrm{P}_{r}=\frac{n!}{(n-r)!}$ Substitute: $n=11, r=7$

$$
\begin{aligned}
{ }_{11} \mathrm{P}_{7} & =\frac{11!}{(11-7)!} \\
& =\frac{11!}{4!} \\
& =1663200
\end{aligned}
$$

There are 1663200 ways starters can be chosen.
7. Solve each equation for n or r.
a) ${ }_{n} \mathrm{P}_{2}=42$
b) ${ }_{7} \mathrm{P}_{r}=840$
${ }_{n} \mathrm{P}_{2}=\frac{n!}{(n-2)!}$

$$
\begin{aligned}
{ }_{7} \mathrm{P}_{r} & =\frac{7!}{(7-r)!} \\
840 & =\frac{5040}{(7-r)!} \\
(7-r)! & =\frac{5040}{840} \\
(7-r)! & =6 \\
\text { Since } 3! & =6 \text {, then } \\
7-r & =3 \\
r & =4
\end{aligned}
$$

8.3

8. Multiple Choice How many ways can 2 pennies, 3 nickels, and 5 quarters be arranged in a row?
A. 30
(B.) 2520
C. 5040
D. 3628800
9. What is the number of permutations of all the letters in the name of each provincial park?
a) VERMILION
There are 9 letters.
2 are Is.
Number of permutations:
$\begin{aligned} \frac{9!}{2!} & =9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \\ & =181440\end{aligned}$
b) OPAPISKAW
There are 9 letters.
2 are Ps and 2 are As.
Number of permutations:
$\frac{9!}{2!2!}=\frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot{ }^{2} \mathcal{A} \cdot 3}{\not Z}$
$=90720$
10. How many ways are there to get from F to G travelling along grid lines and moving only to the left or up?

Total number of grid squares travelled: 8
Squares travelled left: 5; squares travelled up: 3
So, the number of ways to get from F to G is:

$$
\begin{aligned}
\frac{8!}{5!3!} & =\frac{8 \cdot 7 \cdot 6}{6} \\
& =56
\end{aligned}
$$

