Checkpoint: Assess Your Understanding, pages 718–720

8.1

1. A garage door remote has 10 code switches. Each switch can be positioned up or down to create a wireless code. How many codes are possible?

For 10 switches, there are 2¹⁰ or 1024 possible codes.

2. Multiple Choice A restaurant offers a meal combo that consists of a beverage, a main course, and a dessert. There are 5 beverages, 6 main courses, and 4 desserts. How many meal combos are available?

A. 15 **B.** 30 **C.** 20 **D.** 120

3. Morse code uses arrangements of 5 characters 0 to represent the digits 0 through 9.
Each character is either a dot or a dash.
How many arrangements of 4 5 characters are possible?

There are 5 characters. There are 2 choices for each character: dot or dash So, the number of arrangements of 5 characters is: $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32$

8.2

4. Multiple Choice How many 5-letter permutations of YUKON can be created?

A. 6 B. 24 C.	120 D. 3125
------------------------------------	--------------------

5. A family of six is to be seated in a row for a photo. The mother and father must be at either end. How many ways can the family be arranged?

There are 4 children. The number of ways to arrange 4 children is: 4! = 24There are 2 ways to arrange the mother and father: MF and FM So, the number of ways the family can be arranged is: $2 \cdot 24 = 48$

6. An under-10 house-league soccer team has 11 players. Seven players are on the field at a time. How many ways can 7 starters be chosen from the members of the team?

Use the formula: $_{n}P_{r} = \frac{n!}{(n-r)!}$ Substitute: n = 11, r = 7 $_{11}P_{7} = \frac{11!}{(11-7)!}$ $= \frac{11!}{4!}$ $= 1\ 663\ 200$ There are 1\ 663\ 200 ways starters can be chosen. **7.** Solve each equation for *n* or *r*.

a) $_{n}P_{2} = 42$	b) $_{7}P_{r} = 840$
${}_{n}P_{2}=\frac{n!}{(n-2)!}$	$_{7}\mathbf{P}_{r} = \frac{7!}{(7-r)!}$
$42 = \frac{n!}{(n-2)!}$	$840 = \frac{5040}{(7 - r)!}$
42 = n(n - 1) $0 = n^{2} - n - 42$ 0 = (n - 7)(n + 6) n = 7 or n = -6 Since <i>n</i> cannot be negative, n = 7	$(7 - r)! = \frac{5040}{840}$ (7 - r)! = 6 Since 3! = 6, then 7 - r = 3 r = 4

8.3

8. Multiple Choice How many ways can 2 pennies, 3 nickels, and 5 quarters be arranged in a row?

A. 30 (B.) 2520 C. 5040 D. 3 628
--

9. What is the number of permutations of all the letters in the name of each provincial park?

a) VERMILION	b) OPAPISKAW
There are 9 letters.	There are 9 letters.
2 are Is.	2 are Ps and 2 are As.
Number of permutations:	Number of permutations:
$\frac{9!}{2!} = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3$	$\frac{9!}{2!2!} = \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot {}^{2} \mathcal{A} \cdot 3}{\mathcal{X}}$
= 181 440	= 90 720

10. How many ways are there to get from F to G travelling along grid lines and moving only to the left or up?

Total number of grid squares travelled: 8 Squares travelled left: 5; squares travelled up: 3 So, the number of ways to get from F to G is: $\frac{8!}{5!3!} = \frac{8 \cdot 7 \cdot \mathscr{K}}{\mathscr{K}}$ = 56