Lesson 1.2 Exercises, pages 20-25

A
3. Write each binomial in the form $x-a$. What is the value of a ?
a) $x+4$
$x+4=x-(-4)$
$a=-4$
b) $x-1$
$x-1$ is in the form $x-a$.
$a=1$
c) $11+x$
$11+x=x-(-11)$ $a=-11$
d) $-7+x$
$-7+x=x-7$
$a=7$
4. a) Determine the remainder when $x^{3}-4 x^{2}-7 x+10$ is divided by each binomial.
i) $x-1$
ii) $x+3$

$$
\begin{aligned}
& \text { Let } \mathrm{P}(x)=x^{3}-4 x^{2}-7 x+10 \\
& \begin{aligned}
\mathrm{P}(1) & =(1)^{3}-4(1)^{2}-7(1)+10 \\
& =1-4-7+10 \\
& =0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
P(-3) & =(-3)^{3}-4(-3)^{2}-7(-3)+10 \\
& =-27-36+21+10 \\
& =-32
\end{aligned}
$$

The remainder is 0 .
The remainder is $\mathbf{- 3 2}$.
iii) $x+2$
iv) $x-2$
$P(-2)$
P (2)
$=(-2)^{3}-4(-2)^{2}-7(-2)+10=(2)^{3}-4(2)^{2}-7(2)+10$
$=-8-16+14+10=8-16-14+10$
$=0 \quad=-12$
The remainder is 0 . The remainder is $\mathbf{- 1 2}$.
b) Which binomials in part a are factors of $x^{3}-4 x^{2}-7 x+10$?

How do you know?
$x-1$ and $x+2$ are factors of $x^{3}-4 x^{2}-7 x+10$ because the value of the polynomial when $x=1$ and when $x=-2$ is 0 .
5. Which values of $a, a \in \mathbb{Z}$, should be chosen to test for binomial factors of the form $x-a$ of the polynomial $x^{4}+3 x^{3}-8 x^{2}-12 x+16$? How did you choose the values?
I chose values of a that are factors of the constant term in the polynomial, 16. Factors of 16 are: $1,-1,2,-2,4,-4,8,-8,16,-16$

B
6. a) Determine the remainder when each polynomial is divided by
$x-2$.
i) $x^{2}-7 x+11$
Let $\mathrm{P}(x)=x^{2}-7 x+11$
$P(2)=(2)^{2}-7(2)+11$
$=4-14+11$
$=1$

$$
\text { ii) } \begin{aligned}
& 2 x^{3}-3 x^{2}-6 x+8 \\
& \text { Let } \mathrm{P}(x)=2 x^{3}-3 x^{2}-6 x+8 \\
& \mathrm{P}(2)=2(2)^{3}-3(2)^{2}-6(2)+8 \\
& \quad=16-12-12+8 \\
& \quad=0
\end{aligned}
$$

The remainder is 1 .
The remainder is 0 .

$$
\text { iii) } \begin{aligned}
& 3 x^{3}-2 x^{2}-10 x+6 \\
& \text { Let } \mathrm{P}(x)=3 x^{3}-2 x^{2}-10 x+6 \\
& \mathrm{P}(2)=3(2)^{3}-2(2)^{2}-10(2)+6 \\
&=24-8-20+6 \\
&=2
\end{aligned}
$$

iv) $x^{4}-2 x^{3}+3 x^{2}-8$
Let $\mathrm{P}(x)=x^{4}-2 x^{3}+3 x^{2}-8$
$\mathrm{P}(2)=(2)^{4}-2(2)^{3}+3(2)^{2}-8$
$=16-16+12-8$

$$
=4
$$

The remainder is 2 .
The remainder is 4 .
b) Explain the relationship between the remainder when a
polynomial $\mathrm{P}(x)$ is divided by $x-a, a \in \mathbb{Z}$, and $\mathrm{P}(a)$.
When a polynomial $\mathrm{P}(x)$ is divided by $x-a$, the remainder is $\mathrm{P}(a)$.
This result comes from the division statement: $\mathrm{P}(x)=(x-a) \mathrm{Q}(x)+\mathrm{R}$
When $x=a, x-a=0$, so $(x-a) Q(x)=0$
Then, $\mathrm{P}(\mathrm{a})=\mathrm{R}$
7. Determine the remainder.
a) $\left(2 x^{3}-x^{2}+3 x-2\right) \div(x-3)$
b) $\left(3 x^{3}-2 x^{2}-4 x+6\right) \div(x-2)$

$$
\begin{aligned}
& \text { Let } \mathrm{P}(x)=2 x^{3}-x^{2}+3 x-2 \\
& \begin{aligned}
\mathrm{P}(3) & =2(3)^{3}-(3)^{2}+3(3)-2 \\
& =54-9+9-2 \\
& =52
\end{aligned}
\end{aligned}
$$

$$
\text { Let } \mathrm{P}(x)=3 x^{3}-2 x^{2}-4 x+6
$$

$$
\begin{aligned}
P(2) & =3(2)^{3}-2(2)^{2}-4(2)+6 \\
& =24-8-8+6 \\
& =14
\end{aligned}
$$

The remainder is 52 .
The remainder is 14 .
8. When $2 x^{3}+k x^{2}-3 x+2$ is divided by $x-2$, the remainder is 4 . Determine the value of k.

$$
\begin{aligned}
& \text { Let } \mathrm{P}(x)=2 x^{3}+k x^{2}-3 x+2 \\
& \begin{aligned}
\mathrm{P}(2) & =2(2)^{3}+k(2)^{2}-3(2)+2 \\
& =16+4 k-6+2 \\
& =12+4 k
\end{aligned}
\end{aligned}
$$

The remainder is 4 .

$$
\text { So, } \begin{aligned}
12+4 k & =4 \quad \text { Solve for } k . \\
4 k & =-8 \\
k & =-2
\end{aligned}
$$

The value of k is -2 .
9. Determine one binomial factor of each polynomial.
a) $x^{4}+6 x^{3}+5 x^{2}-24 x-36$

Sample response:
Let $\mathrm{P}(x)=x^{4}+6 x^{3}+5 x^{2}-24 x-36$
The factors of -36 are: $1,-1,2,-2,3,-3,4,-4,6,-6,9,-9,12$, $-12,18,-18,36,-36$
Use mental math to substitute $x=1$, then $x=-1$ to determine that neither $x-1$ nor $x+1$ is a factor.
Try $x=2: \mathrm{P}(2)=(2)^{4}+6(2)^{3}+5(2)^{2}-24(2)-36$

$$
=0
$$

So, $x-2$ is a factor of $x^{4}+6 x^{3}+5 x^{2}-24 x-36$.
b) $x^{5}+3 x^{4}-5 x^{3}-15 x^{2}+4 x+12$

Sample response:
Let $\mathrm{P}(x)=x^{5}+3 x^{4}-5 x^{3}-15 x^{2}+4 x+12$
The factors of 12 are: $1,-1,2,-2,3,-3,4,-4,6,-6,12,-12$
Use mental math to substitute $x=1$:
$P(1)=0$
So, $x-1$ is a factor of $x^{5}+3 x^{4}-5 x^{3}-15 x^{2}+4 x+12$.
10. a) Show that $x+5$ is a factor of $x^{3}+4 x^{2}-11 x-30$.

Let $\mathrm{P}(x)=x^{3}+4 x^{2}-11 x-30$
$\mathrm{P}(-5)=(-5)^{3}+4(-5)^{2}-11(-5)-30$

$$
=0
$$

The remainder is 0 , so $x+5$ is a factor of $x^{3}+4 x^{2}-11 x-30$.
b) Determine the other binomial factors of the polynomial.

Verify that the factors are correct.
Divide by $x+5$ to determine the other factor.

So, $x^{3}+4 x^{2}-11 x-30=(x+5)\left(x^{2}-x-6\right)$
Factor the trinomial.
$x^{2}-x-6=(x+2)(x-3)$
So, $x^{3}+4 x^{2}-11 x-30=(x+2)(x-3)(x+5)$
To verify, expand:

$$
\begin{aligned}
(x+2)(x-3)(x+5) & =\left(x^{2}-x-6\right)(x+5) \\
& =x^{3}+5 x^{2}-x^{2}-5 x-6 x-30 \\
& =x^{3}+4 x^{2}-11 x-30
\end{aligned}
$$

Since this is the original polynomial, the factors are correct.
11. Fully factor each polynomial.
a) $x^{3}+6 x^{2}+3 x-10$

Let $\mathrm{P}(x)=x^{3}+6 x^{2}+3 x-10$
The factors of -10 are: $1,-1,2,-2,5,-5,10,-10$
Use mental math to substitute $x=1$:
$\mathrm{P}(1)=0$
So, $x-1$ is a factor.
Divide to determine the other factor.

1 | 1 | 6 | 3 | -10 |
| ---: | ---: | ---: | ---: |
| | 1 | 7 | 10 |
| 1 | 7 | 10 | 0 |

So, $x^{3}+6 x^{2}+3 x-10=(x-1)\left(x^{2}+7 x+10\right)$
Factor the trinomial: $x^{2}+7 x+10=(x+2)(x+5)$
So, $x^{3}+6 x^{2}+3 x-10=(x-1)(x+2)(x+5)$
b) $x^{4}-5 x^{2}+4$

Let $\mathrm{P}(x)=x^{4}-5 x^{2}+4$
The factors of 4 are: $1,-1,2,-2,4,-4$
Use mental math to substitute $x=1$:
$\mathrm{P}(1)=0$; so, $x-1$ is a factor.
Use mental math to substitute $x=-1$:
$\mathrm{P}(-1)=0$; so, $x+1$ is a factor.
Try $x=2: P(2)=(2)^{4}-5(2)^{2}+4$

$$
=0
$$

So, $x-2$ is a factor.

$$
\begin{aligned}
\text { Try } x=-2: P(-2) & =(-2)^{4}-5(-2)^{2}+4 \\
& =0
\end{aligned}
$$

So, $x+2$ is a factor.
Since the original polynomial has degree 4, it can have at most 4 binomial factors.
So, $x^{4}-5 x^{2}+4=(x-1)(x+1)(x-2)(x+2)$
12. a) What value of b will ensure $x+3$ is a factor of $b x^{3}-2 x^{2}+x-6$?

$$
\begin{aligned}
& \text { Let } \mathrm{P}(x)=b x^{3}-2 x^{2}+x-6 \\
& \text { If } x+3 \text { is a factor, } \mathrm{P}(-3)=0 \\
& \begin{array}{l}
\mathrm{P}(-3)=b(-3)^{3}-2(-3)^{2}+(-3)-6 \\
\quad=-27 b-27
\end{array} \\
& \begin{aligned}
& \text { Let } P(-3)=0 \\
&-27 b-27=0 \\
& b=-1
\end{aligned}
\end{aligned}
$$

So, the value of b is -1 .
b) What value of d will ensure $x+2$ is a factor of

$$
\begin{aligned}
& 3 x^{5}-d x^{4}+4 x^{3}-2 d x^{2}+x+10 \text { ? } \\
& \text { Let } \mathrm{P}(x)=3 x^{5}-d x^{4}+4 x^{3}-2 d x^{2}+x+10 \\
& \text { If } x+2 \text { is a factor, } \mathrm{P}(-2)=0 \\
& \mathrm{P}(-2)=3(-2)^{5}-d(-2)^{4}+4(-2)^{3}-2 d(-2)^{2}+(-2)+10 \\
& =-120-24 d
\end{aligned} \begin{array}{r}
\text { Let } \mathrm{P}(-2)=0 \\
-120-24 d=0 \\
\qquad d=\frac{120}{-24}, \text { or }-5
\end{array}
$$

So, the value of d is -5 .
13. Determine whether $x+b$ is a factor of $(x+b)^{5}+(x+p)^{5}+(b-p)^{5}$, $b, p \in \mathbb{R}$.

$$
\begin{aligned}
& \text { Let } \mathrm{P}(x)=(x+b)^{5}+(x+p)^{5}+(b-p)^{5} \\
& \text { If } x+b \text { is a factor, } \mathrm{P}(-b)=0 \\
& \begin{aligned}
\mathrm{P}(-b) & =(-b+b)^{5}+(-b+p)^{5}+(b-p)^{5} \\
& =0+(-(b-p))^{5}+(b-p)^{5} \\
& =0-(b-p)^{5}+(b-p)^{5} \\
& =0
\end{aligned}
\end{aligned}
$$

Since the remainder is $0,(x+b)$ is a factor of $(x+b)^{5}+(x+p)^{5}+(b-p)^{5}, b, p \in \mathbb{R}$.

C
14. When $m x^{3}-2 x^{2}+n x-4$ is divided by $x+2$, the remainder is 4 . When $m x^{3}-2 x^{2}+n x-4$ is divided by $x-1$, the remainder is
-11 . Determine the values of m and n.
Let $\mathrm{P}(x)=m x^{3}-2 x^{2}+n x-4$
$\mathrm{P}(-2)=4$
$\mathrm{P}(-2)=m(-2)^{3}-2(-2)^{2}+n(-2)-4$
$4=-8 m-2 n-12$
$0=-8 m-2 n-16$ (1)
$\mathrm{P}(1)=-11$
$\mathrm{P}(1)=m(1)^{3}-2(1)^{2}+n(1)-4$
$-11=m+n-6$
$0=m+n+5$ (2)
Solve the system of equations:
$0=-8 m-2 n-16$ (1)
$0=m+n+5$ (2)
Solve equation (2) for m : $m=-n-5$
Substitute for m in equation (1). Substitute $n=-4$ in equation (2).
$0=-8 m-2 n-16$ (1) $\quad 0=m-4+5$
$0=-8(-n-5)-2 n-16 \quad m=-1$
$0=8 n+40-2 n-16$
$0=6 n+24$
$n=-4$
So, $m=-1$ and $n=-4$
15. Determine each remainder.
a) $\left(8 x^{2}-6 x+3\right) \div(4 x+1)$

$$
\begin{array}{r}
2 x-2 \\
4 x + 1 \longdiv { 8 x ^ { 2 } - 6 x + 3 } \\
\frac{8 x^{2}+2 x}{-8 x+3} \\
\frac{-8 x-2}{5}
\end{array}
$$

The remainder is 5 .
b) $\left(3 x^{3}+2 x^{2}-6 x-1\right) \div(3 x+2)$

$$
\begin{array}{r}
\frac { x ^ { 2 } - 2 } { 3 x + 2 } \longdiv { 3 x ^ { 3 } + 2 x ^ { 2 } - 6 x - 1 } \\
\frac{3 x^{3}+2 x^{2}}{0}-6 x-1 \\
-6 x-4 \\
-3
\end{array}
$$

The remainder is 3 .

