Checkpoint: Assess Your Understanding, pages 28-31

1.1

1. Multiple Choice When synthetic division is used to divide $x^{4}-7 x^{2}+2 x+3$ by $x+1$, the result is: $1-1-68-5$ Which is the correct division statement?
A. $x^{4}-7 x^{2}+2 x+3=(x+1)\left(x^{4}-x^{3}-6 x^{2}+8 x-5\right)+0$
B. $x^{4}-7 x^{2}+2 x+3=(x+1)\left(x^{3}-x^{2}-6 x+8\right)-5$
C. $x^{4}-7 x^{2}+2 x+3=(x+1)\left(x^{3}-x^{2}-6 x+8\right)+5$
D. $x^{4}-7 x^{2}+2 x-2=(x+1)\left(x^{3}-x^{2}-6 x+8\right)$
2. a) Use long division to divide:
i) $2 x^{2}-11 x-19$ by $x-7$ ii) $3 x^{3}+4 x^{2}-15 x+30$ by $x+4$

$$
x - 7 \longdiv { 2 x ^ { 2 } - 1 1 x - 1 9 } \begin{array} { r }
{ 2 x + 3 } \\
{ \frac { 2 x ^ { 2 } - 1 4 x } { 3 x } - 1 9 } \\
{ \frac { 3 x - 2 1 } { 2 } }
\end{array}
$$

The quotient is $2 x+3$ and the remainder is 2 .

$$
\begin{array}{r}
3 x^{2}-8 x+17 \\
x + 4 \longdiv { 3 x ^ { 3 } + 4 x ^ { 2 } - 1 5 x + 3 0 } \\
\frac{3 x^{3}+12 x^{2}}{-8 x^{2}-15 x} \\
\frac{-8 x^{2}-32 x}{17 x}+30 \\
\frac{17 x+68}{-38}
\end{array}
$$

The quotient is $3 x^{2}-8 x+17$ and the remainder is -38 .
b) Verify the answer to one division in part a.

Sample response:

In part ii, multiply the quotient by the divisor, then add the remainder.

$$
\begin{aligned}
& (x+4)\left(3 x^{2}-8 x+17\right)+(-38) \\
& \quad=3 x^{3}-8 x^{2}+17 x+12 x^{2}-32 x+68-38 \\
& =3 x^{3}+4 x^{2}-15 x+30
\end{aligned}
$$

Since this is the original polynomial, the answer is correct.
3. Use synthetic division to divide $2 x^{4}-7 x^{3}-29 x^{2}-8 x+12$ by each binomial.
a) $x-1$
$1 \begin{array}{rrrrr}2 & -7 & -29 & -8 & 12 \\ & 2 & -5 & -34 & -42 \\ 2 & -5 & -34 & -42 & -30\end{array}, ~$
The quotient is $2 x^{3}-5 x^{2}-34 x-42$ and the remainder is -30 .
b) $x-6$

6 \begin{tabular}{c}
6

2

2 \& -7 \& -29 \& -8 \& 12

\& 12 \& 30 \& 6 \& -12

\hline
\end{tabular}

The quotient is $2 x^{3}+5 x^{2}+x-2$ and the remainder is 0 .
c) $x+2$

$-2 |$| 2 | -7 | -29 | -8 | 12 |
| ---: | ---: | ---: | ---: | ---: |
| | -4 | 22 | 14 | -12 |
| 2 | -11 | -7 | 6 | 0 |,$~$

The quotient is $2 x^{3}-11 x^{2}-7 x+6$ and the remainder is 0 .
d) $x+3$
$-3 \quad \begin{array}{rrrrr}2 & -7 & -29 & -8 & 12 \\ & -6 & 39 & -30 & 114 \\ 2 & -13 & 10 & -38 & 126\end{array}, ~$
The quotient is $2 x^{3}-13 x^{2}+10 x-38$ and the remainder is 126 .

1.2

4. Multiple Choice When a polynomial $\mathrm{P}(x)$ is divided by $x+3$, the remainder is -4 . Which statement is true?
A. $P(-4)=-3$
B. $P(3)=-4$
C. $P(-3)=-4$
D. $P(-3)=0$
5. a) Determine the remainder when $3 x^{4}+8 x^{3}-15 x^{2}-32 x+12$ is divided by $x+1$.

$$
\begin{aligned}
& \text { Let } \begin{aligned}
\mathrm{P}(x) & =3 x^{4}+8 x^{3}-15 x^{2}-32 x+12 \\
\mathrm{P}(-1) & =3(-1)^{4}+8(-1)^{3}-15(-1)^{2}-32(-1)+12 \\
& =3-8-15+32+12 \\
& =24
\end{aligned}
\end{aligned}
$$

The remainder is 24 .
b) Is $x+1$ a factor of the polynomial in part a? If your answer is yes, explain how you know. If your answer is no, determine a binomial of the form $x-a, a \in \mathbb{Z}$, that is a factor.
$x+1$ is not a factor of the polynomial because the remainder after dividing by $x+1$ is not 0 .
The factors of the constant term, 12 , are: $1,-1,2,-2,3,-3,4,-4,6$, $-6,12,-12$. Use mental math to substitute $x=1$ to determine that $x-1$ is not a factor.
Try $x=2: P(2)=3(2)^{4}+8(2)^{3}-15(2)^{2}-32(2)+12$

$$
\begin{aligned}
& =48+64-60-64+12 \\
& =0
\end{aligned}
$$

So, $x-2$ is a factor of $3 x^{4}+8 x^{3}-15 x^{2}-32 x+12$.
6. For each polynomial, determine one factor of the form $x-a, a \in \mathbb{Z}$.
a) $x^{3}-5 x^{2}-17 x+21$

Sample response:
Let $\mathrm{P}(x)=x^{3}-5 x^{2}-17 x+21$
The factors of 21 are: $1,-1,3,-3,7,-7,21,-21$
$\operatorname{Try} x=1: \mathrm{P}(1)=(1)^{3}-5(1)^{2}-17(1)+21$

$$
=0
$$

So, $x-1$ is a factor of $x^{3}-5 x^{2}-17 x+21$.
b) $4 x^{4}-15 x^{3}-32 x^{2}+33 x+10$

Sample response:
Let $P(x)=4 x^{4}-15 x^{3}-32 x^{2}+33 x+10$
The factors of 10 are: $1,-1,2,-2,5,-5,10,-10$
Try $x=1: \mathrm{P}(1)=4(1)^{4}-15(1)^{3}-32(1)^{2}+33(1)+10$ $=0$
So, $x-1$ is a factor of $4 x^{4}-15 x^{3}-32 x^{2}+33 x+10$.
7. Factor this polynomial.
$4 x^{4}-12 x^{3}+3 x^{2}+13 x-6$
Let $\mathrm{P}(x)=4 x^{4}-12 x^{3}+3 x^{2}+13 x-6$
The factors of -6 are: $1,-1,2,-2,3,-3,6,-6$
$\operatorname{Try} x=1: P(1)=4(1)^{4}-12(1)^{3}+3(1)^{2}+13(1)-6$

$$
=2
$$

So, $x-1$ is not a factor.
$\begin{aligned} \text { Try } x=-1: P(-1) & =4(-1)^{4}-12(-1)^{3}+3(-1)^{2}+13(-1)-6 \\ & =0\end{aligned}$
So, $x+1$ is a factor.
Divide to determine the other factor.

-1 | 4 | -12 | 3 | 13 | -6 |
| ---: | ---: | ---: | ---: | ---: |
| | -4 | 16 | -19 | 6 |
| 4 | -16 | 19 | -6 | 0 |

So, $4 x^{4}-12 x^{3}+3 x^{2}+13 x-6=(x+1)\left(4 x^{3}-16 x^{2}+19 x-6\right)$
Let $P_{1}(x)=4 x^{3}-16 x^{2}+19 x-6$
Try $x=2: P_{1}(2)=4(2)^{3}-16(2)^{2}+19(2)-6$

$$
=0
$$

So, $x-2$ is a factor.
Divide to determine the other factor.

2 \begin{tabular}{r}

$|$| 4 | -16 | 19 | -6 |
| ---: | ---: | ---: | ---: |
| | 8 | -16 | 6 |
| 4 | -8 | 3 | 0 |,$~$

\end{tabular}

So, $4 x^{4}-12 x^{3}+3 x^{2}+13 x-6=(x+1)(x-2)\left(4 x^{2}-8 x+3\right)$
Factor the trinomial: $4 x^{2}-8 x+3=(2 x-1)(2 x-3)$
So, $4 x^{4}-12 x^{3}+3 x^{2}+13 x-6=(x+1)(x-2)(2 x-1)(2 x-3)$

