Lesson 2.2 Math Lab: Assess Your Understanding, page 104

Use graphing technology to check your answers.

1. Without graphing, predict whether the graph of each function has a hole. State the related non-permissible value.
a) $y=\frac{x^{2}-16}{x+4}$
b) $y=\frac{x^{2}+5}{x^{2}-25}$
$y=\frac{(x-4)(x+4)}{x-4}$
The graph has a hole at $x=-4$.
$y=\frac{x^{2}+5}{(x-5)(x+5)}$
The graph does not have a hole.
2. Without graphing, predict the equations of any vertical asymptotes for the graph of each function.
a) $y=\frac{2 x+1}{x}$
b) $y=\frac{x^{2}-2}{x^{2}-16}$
$x=0$ is a vertical asymptote.
$y=\frac{x^{2}-2}{(x-4)(x+4)}$
$x= \pm 4$ are vertical asymptotes.
c) $y=\frac{3 x}{x^{2}+2}$
d) $y=\frac{x-2}{x^{2}+7 x+10}$
The denominator is always positive, so no vertical asymptote.
$y=\frac{x-2}{(x+2)(x+5)}$
$x=-2$ and $x=-5$ are vertical asymptotes.
3. Without graphing, predict which graphs of these functions have horizontal asymptotes.
a) $y=\frac{x+3}{2 x^{2}+6 x}$
b) $y=\frac{2 x^{2}+6 x}{x+3}$

The degree of the numerator is less than the degree of the denominator, so there is a horizontal asymptote.

The degree of the numerator is greater than the degree of the denominator, so there is no horizontal asymptote.

