Lesson 2.2 Math Lab: Assess Your Understanding, page 104

Use graphing technology to check your answers.

.

Ø

Ø

Ø

8

1. Without graphing, predict whether the graph of each function has a hole. State the related non-permissible value.

a)
$$y = \frac{x^2 - 16}{x + 4}$$

b) $y = \frac{x^2 + 5}{x^2 - 25}$
 $y = \frac{(x - 4)(x + 4)}{x - 4}$
The graph has a hole at $x = -4$.
b) $y = \frac{x^2 + 5}{(x - 5)(x + 5)}$
The graph does not have a hole.

2. Without graphing, predict the equations of any vertical asymptotes for the graph of each function.

a)
$$y = \frac{2x + 1}{x}$$

 $x = 0$ is a vertical
asymptote.
b) $y = \frac{x^2 - 2}{x^2 - 16}$
 $y = \frac{x^2 - 2}{(x - 4)(x + 4)}$
 $x = \pm 4$ are vertical asymptotes.

c)
$$y = \frac{3x}{x^2 + 2}$$

The denominator is always
positive, so no vertical
asymptote.
 $y = \frac{x - 2}{x^2 + 7x + 10}$
 $y = \frac{x - 2}{(x + 2)(x + 5)}$
 $x = -2$ and $x = -5$ are vertical
asymptotes.

3. Without graphing, predict which graphs of these functions have horizontal asymptotes.

a)
$$y = \frac{x+3}{2x^2+6x}$$
 b) $y = \frac{2x^2+6x}{x+3}$

The degree of the numerator is less than the degree of the denominator, so there is a horizontal asymptote. The degree of the numerator is greater than the degree of the denominator, so there is no horizontal asymptote.