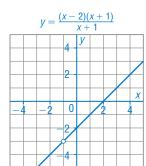
Lesson 2.4 Exercises, pages 134-140

Α

3. Sketch the graph of each function.

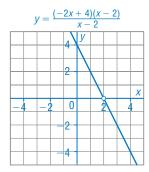
a)
$$y = \frac{(x-2)(x+1)}{x+1}$$



The function is undefined when:
$$x = -1$$

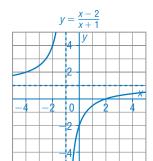
There is a hole at $x = -1$.
The function can be written as: $y = x - 2$, $x \ne -1$
The y-coordinate of the hole is: $y = -3$
Draw an open circle at $(-1, -3)$.
When $x = 0$, $y = -2$
When $y = 0$, $x = 2$
Draw the line $y = x - 2$ on either side of the hole.

b)
$$y = \frac{(-2x + 4)(x - 2)}{x - 2}$$



The function is undefined when: x = 2There is a hole at x = 2. The function can be written as: y = -2x + 4, $x \ne 2$ The y-coordinate of the hole is: y = 0Draw an open circle at (2, 0). When x = 0, y = 4Draw the line y = -2x + 4 on either side of the hole. **4.** Sketch the graph of each function.

a)
$$y = \frac{x-2}{x+1}$$



The function is undefined when:

$$x = -1$$

There are no common factors, so there are no holes. The vertical asymptote has equation: x = -1 There is a horizontal asymptote. The numerator and denominator have equal leading coefficients, so the horizontal asymptote has equation y = 1. Close to the asymptotes:

X	-1.01	-0.99	-100	100
у	301	-299	1.03	0.97

Some of the *y*-values above are approximate.

When
$$x = 0$$
, $y = -2$

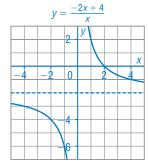
When
$$y = 0, x = 2$$

Determine the coordinates of some other points:

$$(-2, 4), (-4, 2)$$

Draw broken lines for the asymptotes. Join the points to form smooth curves.

b)
$$y = \frac{-2x + 4}{x}$$



The function is undefined when:

$$x = 0$$

There are no common factors, so there are no holes.

The vertical asymptote has equation: x = 0

There is a horizontal asymptote.

The leading coefficients are -2 and 1, so the horizontal asymptote has equation y = -2.

Close to the asymptotes:

X	-0.01	0.01	-100	100
y	-402	398	-2.04	-1.96

When y = 0, x = 2

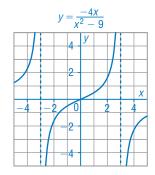
Determine the coordinates of some other points: (-4, -3), (-1, -6),

$$(1, 2), (4, -1)$$

Draw broken lines for the asymptotes. Join the points to form smooth curves.

5. Sketch the graph of each function, then state the domain.

a)
$$y = \frac{-4x}{x^2 - 9}$$



The function is undefined when: $x = \pm 3$ There are no common factors, so there are no holes. The vertical asymptotes have equations: x = -3 and x = 3There is a horizontal asymptote with equation y = 0.

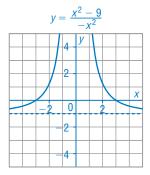
X	-3.01	-2.99	2.99
у	200	-200	200

Close to the asymptotes:

X	3.01	-100	100
у	-200	0.04	-0.04

Some of the *y*-values above are approximate. When x = 0, y = 0 Determine the approximate coordinates of some other points: (-4, 2.3), (-2, -1.6), (2, 1.6), (4, -2.3) Draw broken lines for the asymptotes. Join the points to form smooth curves. The domain is: $x \neq \pm 3$

b)
$$y = \frac{x^2 - 9}{-x^2}$$



The function is undefined when: x = 0

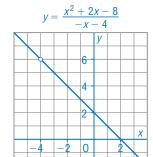
There are no common factors, so there are no holes. The vertical asymptote has equation: x = 0 There is a horizontal asymptote. The leading coefficients are 1 and -1, so the equation of the horizontal asymptote is y = -1.

Close to the asymptotes:

Х	± 0.1	±100
у	899	-0.9991

When y = 0, $x = \pm 3$ Determine the coordinates of some other points: $(\pm 2, 1.25)$ Draw broken lines for the asymptotes. Join the points to form smooth curves. The domain is: $x \neq 0$

c)
$$y = \frac{x^2 + 2x - 8}{-x - 4}$$



The function is undefined when:
$$x = -4$$

Factor:
$$y = \frac{(x + 4)(x - 2)}{-(x + 4)}$$

There is a hole at x = -4. The function can be written as: y = -x + 2, $x \ne -4$

The *y*-coordinate of the hole is: y = 6

Draw an open circle at (-4, 6), then draw the line y = -x + 2 on either side of the hole. The domain is: $x \ne -4$

d)
$$y = \frac{2x^2 - 3x + 1}{x - 2}$$

$$y = \frac{x-2}{x-2}$$

$$12 \quad y$$

$$8 \quad x$$

$$-2 \quad x$$

$$4 \quad x$$

The function is undefined when:

x = 2

There are no common factors, so there are no holes.

The vertical asymptote has equation: x = 2

There is also an oblique asymptote.

Determine:

$$(2x^2 - 3x + 1) \div (x - 2)$$

The quotient is 2x + 1; so the equation of the oblique asymptote is y = 2x + 1. Draw broken lines for the asymptotes.

Close to the vertical asymptote:

X	1.99	2.01
у	≐ − 295	≐305

When
$$x = 0$$
, $y = -0.5$

When
$$y = 0$$
, $2x^2 - 3x + 1 = 0$

$$(2x-1)(x-1)=0$$

$$x = 0.5 \text{ or } x = 1$$

Plot points at (0, -0.5), (0.5, 0), and (1, 0).

Determine the coordinates of some other points: (-1, -2),

(3, 10), (4, 10.5)

Join the points to form smooth curves.

The domain is: $x \neq 2$

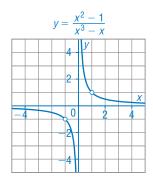
6. a) How are these functions different from other functions in this lesson?

i)
$$y = \frac{x^2 - 1}{x^3 - x}$$

ii)
$$y = \frac{x^3 - x}{x^2 - 1}$$

Both functions contain x^3 -terms.

b) Sketch the graph of each function in part a, then state the domain and range.



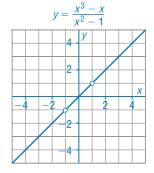
i) Factor: $y = \frac{(x-1)(x+1)}{x(x-1)(x+1)}$

There are holes at $x = \pm 1$, and an asymptote with equation: x = 0The function can be written as: $y = \frac{1}{x}$, $x \ne \pm 1$ The coordinates of the holes are: (-1, -1) and (1, 1)

Graph $y = \frac{1}{x}$ on either side of each hole.

Draw open circles at the

The domain is: $x \neq \pm 1$, $x \neq 0$ The range is: $y \neq \pm 1$, $y \neq 0$



ii) Factor: $y = \frac{x(x-1)(x+1)}{(x-1)(x+1)}$

There are holes at $x = \pm 1$.

The function can be written as:

$$y = x, x \neq \pm 1$$

The coordinates of the holes are:

Draw open circles at the holes.

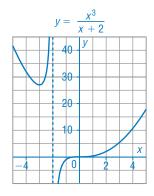
Graph y = x on either side of the holes.

The domain is: $x \neq \pm 1$

The range is: $y \neq \pm 1$

7. For a rational function, when the degree of the numerator is 2 or more than the degree of the denominator, the graph has no horizontal or oblique asymptotes. Without using graphing technology, determine a strategy to sketch the graph of $y = \frac{x^3}{x+2}$ then graph the function. State the domain.

The function is undefined when x = -2. Draw a vertical asymptote at x = -2. Make a table of values. Approximate the *y*-values.



				-2.01							
у	42	32	27	812	-788	-1	0	0.3	2	5.4	11

Join the points with 2 smooth curves.

The domain is: $x \neq -2$

C

8. Sketch the graph of each function, then state the domain.

a)
$$y = \frac{x^2}{x^3 - 3x^2 - x + 3}$$

The function is undefined when:

$$x^3 - 3x^2 - x + 3 = 0$$

Use the factor theorem.

Let
$$f(x) = x^3 - 3x^2 - x + 3$$

Use mental math to determine f(1) = 0 and f(-1) = 0.

$$f(3) = 3^3 - 3(3)^2 - 3 + 3$$
$$= 0$$

So, there are vertical asymptotes with equations:

$$x = -1$$
, $x = 1$, and $x = 3$

Since the degree of the numerator is less than the

degree of the denominator, there is a horizontal asymptote with equation y = 0. Close to the asymptotes:

Х	-100	-1.01	-0.99	0.99	1.01	2	2.99	3.01	100
y	-0.01	-13	12	25	-26	– 1.3	-113	112	0.01

When x = 0, y = 0

Determine the approximate coordinates of other points: (-2, -0.3), $(\pm 0.5, 0.1)$, (4, 1.1)

Draw 4 smooth curves through the points.

The domain is: $x \neq -1$, $x \neq 1$, $x \neq 3$

b)
$$y = \frac{x^3 - 2x^2 - x + 2}{x^2 - 4}$$

The function is undefined when:

$$x^2-4=0$$

$$x = \pm 2$$

Factor the numerator. Use the factor theorem.

Let
$$f(x) = x^3 - 2x^2 - x + 2$$

Use mental math to determine f(1) = 0 and

$$f(-1)=0.$$

$$f(2) = 2^3 - 2(2)^2 - 2 + 2$$

= 0

The function is:
$$y = \frac{(x-1)(x+1)(x-2)}{(x-2)(x+2)}$$

There is a hole at x = 2. The function can be written as:

$$y = \frac{(x-1)(x+1)}{(x+2)}$$
, $x \neq 2$, or $y = \frac{x^2-1}{x+2}$, $x \neq 2$

There is a vertical asymptote at x = -2.

The y-coordinate of the hole is 0.75.

Since the degree of the numerator is 1 more than the degree of the denominator, there is an oblique asymptote. Determine:

$$(x^2 - 1) \div (x + 2)$$

The quotient is x - 2; so the equation of the oblique asymptote is y = x - 2.

Draw broken lines for the asymptotes.

When
$$x = 0$$
, $y = -0.5$

When
$$y = 0$$
, $x^2 - 1 = 0$, and $x = \pm 1$

Choose points close to the asymptotes and other points:

Х	-4	-3	-2.01	-1.99
у	-7.5	-8	-304	296

Draw an open circle at (2, 0.75).

Join the points to form 2 smooth curves.

The domain is: $x \neq \pm 2$

