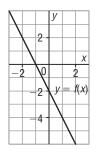
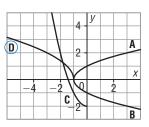
Checkpoint: Assess Your Understanding, pages 124–128

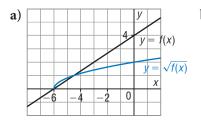
2.1

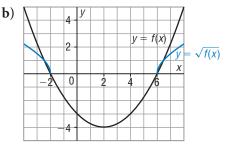
1. Multiple Choice Given the graph of the function y = f(x), which graph below right represents $y = \sqrt{f(x)}$?





- **2.** For each function y = f(x) graphed below:
 - Sketch the graph of $y = \sqrt{f(x)}$.
 - State the domain and range of $y = \sqrt{f(x)}$.
 - Explain why the domains are different and the ranges are different.





Mark points where y = 0 or y = 1. $y = \sqrt{f(x)}$ is not defined The graph of $y = \sqrt{f(x)}$ is above the graph of y = f(x) between these points. Choose, then mark other points on the graph of $y = \sqrt{f(x)}$.

x	y = f(x)	$y=\sqrt{f(x)}$			
-3	2	≐1.4			
0	4	2			

$y=\sqrt{f(x)}.$						
	x	y = f(x)	$y=\sqrt{f(x)}$			
	-4	5	≐ 2.2			
	8	5	≐ 2.2			

for -2 < x < 6. Mark points

where y = 0 or y = 1.

points on the graph of

Choose, then mark other

Join the points with a smooth curve. Domain is: $x \ge -6$

Range is: $y \ge 0$

Join the points with 2 smooth curves. Domain is: $x \le -2$ or $x \ge 6$ Range is: $y \ge 0$

The domain of a linear function or a quadratic function is all real values of x, but the square root of a negative number is undefined, so any value of x that makes the radicand negative is not in the domain of a radical function.

The range of the linear function is all real values of y, and the range of the quadratic function is all real values of y that are greater than or equal to -4. The principal square root of a number is always 0 or positive, so the range of the radical functions is restricted to these values of y.

3. Solve each radical equation by graphing. Give the solution to the nearest tenth.

a)
$$-x + 3 = \sqrt{2x - 1}$$

Write the equation as:
Write the equation as:

 $-x + 3 - \sqrt{2x - 1} = 0$ Graph the related function: $f(x) = -x + 3 - \sqrt{2x - 1}$ Use graphing technology to determine the approximate zero: 1.5505103 So, the solution is: x = 1.6 Write the equation as: $\sqrt{x+2} - 5 + \sqrt{3x+4} = 0$ Graph the related function: $f(x) = \sqrt{x+2} - 5 + \sqrt{3x+4}$ Use graphing technology to determine the approximate zero: 1.779514 So, the solution is: x = 1.8

2.2

4. Use graphing technology to graph each rational function. Identify any non-permissible values of *x* and the equations of any horizontal asymptotes.

a)
$$y = \frac{3x}{x + 4}$$

Since $x + 4 \neq 0$, then $x \neq -4$
The vertical asymptote has
equation $x = -4$.
The horizontal asymptote has
equation $y = 3$.
b) $y = \frac{3x}{x^2 - 4}$
Since $x^2 - 4 \neq 0$, then $x \neq \pm 2$
The vertical asymptotes have
equations $x = 2$ and $x = -2$.
The horizontal asymptote has
equation $y = 0$.

c)
$$y = \frac{x^2 - 4}{3x}$$
 d) $y = \frac{x^2 - 4x}{3x}$

Since $3x \neq 0$, then $x \neq 0$ The vertical asymptote has equation x = 0. There is no horizontal asymptote. Since $3x \neq 0$, then $x \neq 0$ There is a hole at x = 0. There is no horizontal asymptote.

2.3

5. Multiple Choice Which function has a graph with a hole?

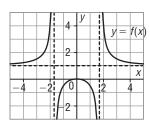
(A)
$$y = \frac{x+4}{2x^2+8x}$$

(B. $y = \frac{x-4}{2x^2+8x}$
(C. $y = \frac{4x+4}{2x^2+8x}$
(D. $y = \frac{x+4}{2x^2-8x}$

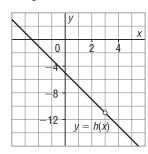
6. Match each function to its graph. Justify your choice.

i) Graph A

ii) Graph B

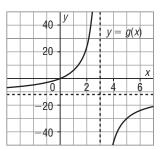


iii) Graph C



a)
$$y = \frac{-12x}{x-3}$$

There is a vertical asymptote with equation x = 3. The degrees of the numerator and denominator are equal, so there is a horizontal asymptote that is not the *x*-axis. The function matches Graph B.



iv) Graph D

	-2	0 -	У		Í	<u>у</u> :	= k	(<i>X</i>)	
	-1	0 -		 	'				 X
-2	<u>2</u> —1	0 0 -		$\left\{ \right\}$	2	1	(5	

b)
$$y = \frac{2x^2 - x - 15}{3 - x}$$

Factor:
$$y = \frac{(2x + 5)(x - 3)}{3 - x}$$
,
or $y = \frac{-(2x + 5)(x - 3)}{x - 3}$

There is a hole at x = 3. The function matches Graph C.

c)
$$y = \frac{x^2}{x - 3}$$

There is a vertical asymptote with equation x = 3. The degree of the numerator is 1 more than the degree of the denominator, so there is an oblique asymptote. The function matches Graph D.

d)
$$y = \frac{x^2}{x^2 - 3}$$

The function is not defined for $x^2 - 3 = 0$; that is, $x = \pm \sqrt{3}$. So, there are vertical asymptotes at $x = -\sqrt{3}$ and $x = \sqrt{3}$. The degrees of the numerator and denominator are equal, so there is a horizontal asymptote that is not the *x*-axis. The function matches Graph A. **7.** For the graph of each rational function below, determine without technology:

i) the equations of any asymptotes and the coordinates of any hole ii) the domain of the function

Use graphing technology to verify the characteristics.

a)
$$y = \frac{2x^2}{25 - x^2}$$

- i) The function is undefined when $25 x^2 = 0$; that is, when $x = \pm 5$. There are no common factors, so there are vertical asymptotes with equations x = 5 and x = -5. The degrees of the numerator and denominator are equal, so there is a horizontal asymptote. The leading coefficients of the numerator and denominator are 2 and -1, respectively. So, the horizontal asymptote has equation: y = -2
- ii) The domain is: $x \neq \pm 5$

b)
$$y = \frac{-2x^2 - 6x}{x + 3}$$

i) The function is undefined when x + 3 = 0; that is, when x = -3. Factor: $y = \frac{-2x(x + 3)}{x + 3}$ There is a hole at x = -3. The function is: y = -2x, $x \neq -3$ The coordinates of the hole are: (-3, 6)

```
ii) The domain is: x \neq -3
```

8. Solve each rational equation by graphing. Give the solution to the nearest tenth.

a)
$$x - 2 = \frac{3x - 5}{x - 3}$$

Graph a related function:
 $f(x) = x - 2 - \frac{3x - 5}{x - 3}$
Use graphing technology to
determine the zeros:
 $x = 1.8$ or $x = 6.2$
b) $\frac{x^2 + 3x - 5}{x - 1} = -5$
Graph a related function:
 $f(x) = \frac{x^2 + 3x - 5}{x - 1} + 5$
Use graphing technology to
determine the zeros:
 $x = -9.1$ or $x = 1.1$

5