Lesson 3.3 Exercises, pages 201–210

3. Here is the graph of y = g(x). On the same grid, sketch the graph of each function.

a)
$$y = \frac{1}{3}g(x)$$

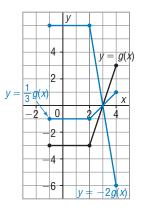
Α

 $a = \frac{1}{3}$, so the graph of y = g(x) is vertically compressed by a factor of $\frac{1}{3}$.

Use: (x, y) on y = g(x) corresponds to

$$\left(x,\frac{1}{3}y\right)$$
 on $y=\frac{1}{3}g(x)$.

Point on $y = g(x)$	Point on $y = \frac{1}{3}g(x)$
(-1, -3)	(-1, -1)
(2, -3)	(2, -1)
(4, 3)	(4, 1)



Plot the points, then join them.

b) y = -2g(x)

a = -2, so the graph of y = g(x) is vertically stretched by a factor of 2, then reflected in the *x*-axis. Use: (x, y) on y = g(x) corresponds to (x, -2y) on y = -2g(x).

Point on $y = g(x)$	Point on $y = -2g(x)$	
(-1, -3)	(-1, 6)	
(2, -3)	(2, 6)	
(4, 3)	(4, -6)	

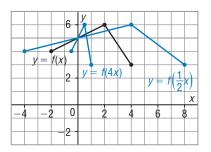
Plot the points, then join them.

4. Here is the graph of y = f(x). On the same grid, sketch the graph of each function.

a)
$$y = f(4x)$$

b = 4, so the graph of y = f(x) is horizontally compressed by a factor of $\frac{1}{4}$. Use: (x, y) on y = f(x) corresponds to $\left(\frac{x}{4}, y\right)$ on y = f(4x).

Point on $y = f(x)$	Point on $y = f(4x)$
(-2, 4)	(-0.5, 4)
(2, 6)	(0.5, 6)
(4, 3)	(1, 3)



Plot the points, then join them.

b)
$$y = f\left(\frac{1}{2}x\right)$$

 $b = \frac{1}{2}$ or 0.5, so the graph of y = f(x) is horizontally stretched by a factor of $\frac{1}{0.5}$, or 2.

Use: (x, y) on y = f(x) corresponds to $\left(\frac{x}{0.5}, y\right)$, or (2x, y) on $y = f\left(\frac{1}{2}x\right)$.

Point on $y = f(x)$	Point on $y = f\left(\frac{1}{2}x\right)$
(-2, 4)	(-4, 4)
(2, 6)	(4, 6)
(4, 3)	(8, 3)

Plot the points, then join them.

- **5.** The graph of y = f(x) is transformed as described below. Write an equation of the image graph in terms of the function *f*.
 - a) a vertical stretch by a factor of 4

The equation of the image graph has the form y = af(x). Since the graph was vertically stretched by a factor of 4, a = 4. So, the equation of the image graph is: y = 4f(x)

b) a horizontal compression by a factor of $\frac{1}{3}$ and a reflection in the *y*-axis

The equation of the image graph has the form y = f(bx). Since the graph was horizontally compressed by a factor of $\frac{1}{3}$, $\frac{1}{b} = \frac{1}{3}$, or b = 3. Since the graph was also reflected in the *y*-axis, *b* is negative. So, the equation of the image graph is: y = f(-3x)

c) a vertical compression by a factor of $\frac{1}{5}$ and a reflection in the *x*-axis

The equation of the image graph has the form y = af(x). Since the graph was vertically compressed by a factor of $\frac{1}{5}$, $a = \frac{1}{5}$ Since the graph was also reflected in the *x*-axis, *a* is negative. So, the equation of the image graph is: $y = -\frac{1}{5}f(x)$

B

6. The graph of y = |x| is transformed, and the equation of its image is y = |2x|. Student A says the graph of y = |x| was horizontally compressed by a factor of $\frac{1}{2}$. Student B says the graph of y = |x| was vertically stretched by a factor of 2. Who is correct? Explain.

Both students are correct. Compare y = |2x| to y = a|bx|: a = 1 and b = 2. So, the graph of y = |x| was horizontally compressed by a factor of $\frac{1}{2}$. Because |2| is 2, the equation y = |2x| can also be written as y = 2|x|. Compare y = 2|x| to y = a|bx|: a = 2 and b = 1. So, the graph of y = |x| was vertically stretched by a factor of 2.

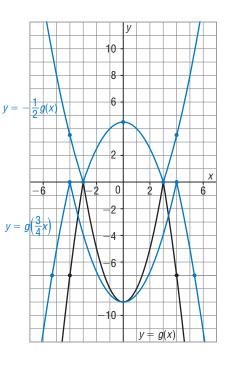
7. The point A(36, 6) lies on the graph of $y = \sqrt{x}$. What are the coordinates of its image A' on the graph of $y = -\frac{1}{2}\sqrt{3x}$? How do you know?

Compare $y = -\frac{1}{2}\sqrt{3x}$ to $y = a\sqrt{bx}$: $a = -\frac{1}{2}$ and b = 3Point (x, y) on $y = \sqrt{x}$ corresponds to point $\left(\frac{x}{3}, -\frac{1}{2}y\right)$ on $y = -\frac{1}{2}\sqrt{3x}$. So, the image of A(36, 6) is A' $\left(\frac{36}{3}, -\frac{1}{2}(6)\right)$, which is A'(12, -3). **8.** Here is the graph of y = g(x). On the same grid, sketch the graph of each function. State the domain and range of each function.

a)
$$y = g\left(\frac{3}{4}x\right)$$

 $b = \frac{3}{4}, \text{ so the graph of } y = g(x) \text{ is horizontally stretched by a factor of } \frac{1}{0.75}, \text{ or } \frac{4}{3}.$ Use: (x, y) on y = g(x) corresponds $y = g(\frac{3}{4}x)$.

Point on $y = g(x)$	Point on $y = g\left(\frac{3}{4}x\right)$
(-4, -7)	$\left(-\frac{16}{3}, -7\right)$
(-3, 0)	(-4, 0)
(0, -9)	(0, -9)
(3, 0)	(4, 0)
(4, -7)	$\left(\frac{16}{3}, -7\right)$



Plot the points, then join them with a smooth curve. Both functions have domain: $x \in \mathbb{R}$ Both functions have range: $y \le 0$

b)
$$y = -\frac{1}{2}g(x)$$

 $a = -\frac{1}{2}$, so the graph of $y = g(x)$ is vertically compressed by a factor
of $\frac{1}{2}$, then reflected in the *x*-axis. Use: (x, y) on $y = g(x)$ corresponds to
 $\left(x, -\frac{1}{2}y\right)$ on $y = -\frac{1}{2}g(x)$.

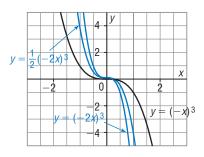
Point on	Point on
y = g(x)	$y = -\frac{1}{2}g(x)$
(-4, -7)	$\left(-4,\frac{7}{2}\right)$
(-3, 0)	(-3, 0)
(0, -9)	(0, 4.5)
(3, 0)	(3, 0)
(4, -7)	$\left(4,\frac{7}{2}\right)$

Plot the points, then join them with a smooth curve. Both functions have domain: $x \in \mathbb{R}$ The range of y = g(x) is: $y \le 0$ The range of $y = -\frac{1}{2}g(x)$ is: $y \ge 0$ **9.** On each grid, sketch the graph of each given function then state its domain and range.

a) i) $y = (-2x)^3$

Compare to $y = (-x)^3$: b = 2; so use mental math and the transformation: (x, y) on $y = (-x)^3$ corresponds to $\left(\frac{x}{2}, y\right)$ on $y = (-2x)^3$.

Domain: $x \in \mathbb{R}$; range: $y \in \mathbb{R}$



ii)
$$y = \frac{1}{2}(-2x)^3$$

Compare to $y = (-2x)^3$: $a = \frac{1}{2}$; so use mental math and the transformation: (x, y) on $y = (-2x)^3$ corresponds to $(x, \frac{1}{2}y)$ on $y = \frac{1}{2}(-2x)^3$. Domain: $x \in \mathbb{R}$; range: $y \in \mathbb{R}$

b) **i**) $y = 2\sqrt{3x}$

Compare to $y = \sqrt{x}$: a = 2, b = 3; so use mental math and the transformation: (x, y) on $y = \sqrt{x}$ corresponds to $\left(\frac{x}{3}, 2y\right)$ on $y = 2\sqrt{3x}$. Domain: $x \ge 0$; range: $y \ge 0$

8 -	У	J	(=	2√	3 <i>x</i>	_	/	_	
4 -		/	/	у	=	\sqrt{x}			
		-	-						X
0		2	2	4	4	6	5	8	3
4 -	$\boldsymbol{\lambda}$								
т —						3√3	_		
				' =	-2	5.7.5	X		

ii) $y = -3\sqrt{3x}$

Compare to $y = \sqrt{x}$: a = -3, b = 3; so use mental math and the transformation: (x, y) on $y = \sqrt{x}$ corresponds to $\left(\frac{x}{3}, -3y\right)$ on $y = -3\sqrt{3x}$. Domain: $x \ge 0$; range: $y \le 0$

10. The function f(x) = (x - 10)(x + 8) has zeros at 10 and -8. What are the zeros of the function $y = 4f\left(\frac{1}{3}x\right)$? Each point (x, y) on y = f(x) corresponds to the point $\left(\frac{x}{\frac{1}{3}}, 4y\right)$, or (3x, 4y) on $y = 4f\left(\frac{1}{3}x\right)$. So, the zeros of $y = 4f\left(\frac{1}{3}x\right)$ are 3(10), or 30, and 3(-8), or -24. **11.** Use transformations to describe how the graph of the second function compares to the graph of the first function.

a) y = 3x + 4 $y = -\frac{1}{2}(3(5x) + 4)$

Let f(x) = 3x + 4, then compare $y = -\frac{1}{2}(3(5x) + 4)$ to y = af(bx): $a = -\frac{1}{2}$ and b = 5. The graph of $y = -\frac{1}{2}(3(5x) + 4)$ is the image of the graph of y = 3x + 4after a vertical compression by a factor of $\frac{1}{2}$, a horizontal compression by a factor of $\frac{1}{5}$, and a reflection in the *x*-axis.

b)
$$y = x^3 - 6x$$
 $y = \frac{1}{4} \left[\left(-\frac{1}{2}x \right)^3 - 6 \left(-\frac{1}{2}x \right) \right]$
Let $f(x) = x^3 - 6x$, then compare $y = \frac{1}{4} \left[\left(-\frac{1}{2}x \right)^3 - 6 \left(-\frac{1}{2}x \right) \right]$ to
 $y = af(bx)$: $a = \frac{1}{4}$ and $b = -\frac{1}{2}$.
The graph of $y = \frac{1}{4} \left[\left(-\frac{1}{2}x \right)^3 - 6 \left(-\frac{1}{2}x \right) \right]$ is the image of the graph of
 $y = x^3 - 6x$ after a vertical compression by a factor of $\frac{1}{4}$, a horizontal
stretch by a factor of $\frac{1}{0.5}$, or 2, and a reflection in the y-axis

12. The graph of y = g(x) is a f(x)transformation image of the graph of y = f(x). Corresponding points are labelled. Write an equation of the image graph in terms of the function *f*. Ά′ y = g(x)Corresponding points are: A(0, 16) and A'(0, -8); B(2, 0) and B'(1, 0). An equation for the image graph after a vertical or horizontal stretch can be written in the form y = af(bx). A point (x, y) on y = f(x) corresponds to the point $\left(\frac{x}{b}, ay\right)$ on y = af(bx). The image of A(0, 16) is $(\frac{0}{b}, a(16))$, which is A'(0, -8). Equate the *y*-coordinates: $a = -\frac{1}{2}$ The image of B(2, 0) is $\left(\frac{2}{b}, a(0)\right)$, which is B'(1, 0). Equate the *x*-coordinates: b = 2So, an equation of y = g(x) is: $y = -\frac{1}{2}f(2x)$

13. The graph of y = h(x) is a transformation image of the graph of $y = \sqrt{x}$. Corresponding points are labelled. Write an equation of the image graph in terms of *x*.



Corresponding points are: A(1, 1) and A'(-1, 3) An equation for the image graph after a vertical or horizontal stretch can be written in the form $y = a\sqrt{bx}$. A point (x, y) on $y = \sqrt{x}$ corresponds to the point $\left(\frac{x}{b}, ay\right)$ on $y = a\sqrt{bx}$. So, the image of A(1, 1) is $\left(\frac{1}{b}, a(1)\right)$, which is A'(-1, 3). Equate the x-coordinates: Equate the y-coordinates: $\frac{1}{b} = -1$ a = 3 b = -1So, an equation is: $y = 3\sqrt{-x}$ Verify with a different pair of corresponding points. B(4, 2) lies on $y = \sqrt{x}$ so $\left(\frac{4}{-1}, 3(2)\right)$, or (-4, 6) should lie on y = h(x), which it does.

So, the equation $y = 3\sqrt{-x}$ is likely correct.

- **14.** a) Determine the equation of the function $y = \sqrt{x}$ after each transformation.
 - i) a horizontal compression by a factor of $\frac{1}{9}$

The graph of $y = \sqrt{bx}$ is the image of the graph of $y = \sqrt{x}$ after a horizontal compression by a factor of $\frac{1}{b}$. Since the graph of $y = \sqrt{x}$ was horizontally compressed by a factor of $\frac{1}{9}$, b = 9 and the equation of the image graph is $y = \sqrt{9x}$, or $y = 3\sqrt{x}$.

ii) a vertical stretch by a factor of 3

The graph of $y = a\sqrt{x}$ is the image of the graph of $y = \sqrt{x}$ after a vertical stretch by a factor of *a*. Since the graph of $y = \sqrt{x}$ was vertically stretched by a factor of 3, a = 3 and the equation of the image graph is $y = 3\sqrt{x}$.

b) What do you notice about the equations in part a? Explain.

The equations in part a are the same. When writing the equation of the function after the horizontal compression, because 9 is a perfect square, it was brought outside the square root sign as 3. So, the transformation can now be thought of as a vertical stretch by a factor of 3.

c) Write the equation of a different function whose image would be the same after two different stretches or compressions. Justify your answer.

Sample response: I chose the function $y = x^2$. The graph of $y = 4x^2$ is the image of the graph of $y = x^2$ after a vertical stretch by a factor of 4. The graph of $y = (2x)^2$, or $y = 4x^2$ is the image of the graph of $y = x^2$ after a horizontal compression by a factor of $\frac{1}{2}$.

So, the image of $y = x^2$ after a vertical stretch by a factor of 4 is the same as the image of $y = x^2$ after a horizontal compression by a factor of $\frac{1}{2}$.

С

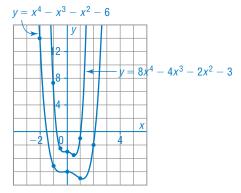
15. a) Write the equation of a quartic or quintic polynomial function.

Sample response: $y = x^4 - x^3 - x^2 - 6$

b) Sketch its graph.

The equation represents an even-degree polynomial function. Since the leading coefficient is positive, the graph opens up. The constant term is -6, so the *y*-intercept is -6. Use a table of values to create the graph.

x	у
-2	14
-1	-5
0	-6
1	-7
2	-2



c) Choose a vertical and a horizontal stretch or compression. Sketch the final image after these transformations on the grid in part b.

Sample response: I chose a horizontal compression by a factor of $\frac{1}{2}$ and a vertical compression by a factor of $\frac{1}{2}$.

Use: (x, y) on $y = x^4 - x^3 - x^2 - 6$ corresponds to $\left(\frac{x}{2}, \frac{1}{2}y\right)$.

(x, y)	$\left(\frac{x}{2},\frac{1}{2}y\right)$
(-2, 14)	(-1, 7)
(-1, -5)	(-0.5, -2.5)
(0, -6)	(0, -3)
(1, -7)	(0.5, -3.5)
(2, -2)	(1, -1)

d) Write an equation of the final image.

Sample response: The graph of $y = x^4 - x^3 - x^2 - 6$ was horizontally compressed by a factor of $\frac{1}{2}$ and vertically compressed by a factor of $\frac{1}{2}$. So, $a = \frac{1}{2}$ and b = 2. To write the equation of the final image, replace x with 2x and multiply y by $\frac{1}{2}$: $y = \frac{1}{2}(2x)^4 - (2x)^3 - (2x)^2 - 6$

$$y = \frac{1}{2}((2x)^{4} - (2x)^{3} - (2x)^{2} - 6)$$

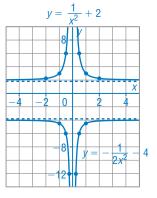
$$y = \frac{1}{2}(16x^{4} - 8x^{3} - 4x^{2} - 6)$$

$$y = 8x^{4} - 4x^{3} - 2x^{2} - 3$$

- **16.** On the same grid:
 - a) Sketch the graph of $y = \frac{1}{x^2} + 2$. $y = \frac{1}{x^2} + 2$ is undefined when x = 0. So, the line x = 0 is a vertical asymptote. When $|x| \to \infty$, $\frac{1}{x^2} + 2 \to 2$

So, the line y = 2 is a horizontal asymptote. Use a table of values to sketch the graph.

X	у
-2	2.25
-1	3
-0.5	6
0.5	6
1	3
2	2.25



b) Sketch the final image after a vertical stretch by a factor of 2, a reflection in the *x*-axis, and a horizontal compression by a factor of $\frac{1}{2}$.

The graph is vertically stretched by a factor of 2 and reflected in the *x*-axis, so a = -2. The graph is horizontally compressed by a factor of $\frac{1}{2}$, so b = 2. Use: (x, y) on $y = \frac{1}{x^2} + 2$ corresponds to $\left(\frac{x}{2}, -2y\right)$ on the final image.

(<i>x</i> , <i>y</i>)	$\left(\frac{x}{2}, -2y\right)$
(-2, 2.25)	(-1, -4.5)
(-1, 3)	(-0.5, -6)
(-0.5, 6)	(-0.25, -12)
(0.5, 6)	(0.25, -12)
(1, 3)	(0.5, -6)
(2, 2.25)	(1, -4.5)

c) How does the final image relate to the graph of $y = \frac{1}{x^2}$? Are the asymptotes the same? Explain.

The equation of the final image is $y = -2\left(\frac{1}{(2x)^2} + 2\right)$ = $\frac{-2}{4x^2} - 4$

 $= \frac{-2}{4x^2} - 4$ $= \frac{-1}{2x^2} - 4$ f $x = \frac{1}{2x^2}$ after a x

So, the final image is the graph of $y = \frac{1}{x^2}$ after a vertical compression by a factor of $\frac{1}{2}$, a reflection in the *x*-axis, and a translation of 4 units down. The vertical asymptotes are the same, but the equation of the horizontal asymptote is y = -4.