Lesson 3.4 Exercises, pages 226–232

3. The graph of y = g(x) is the image of the graph of y = f(x) after a single transformation. Identify the transformation.

Α

b)	4 -	У							
	2 -		y =	= f(x)	_	-	_	
	0	P	2		1	<u>у</u> = е	= g	(<i>X</i>) 8	<u>x</u> 3

A horizontal compression by a factor of $\frac{1}{3}$, or a vertical stretch by a factor of 3

A vertical compression by a factor of $\frac{1}{2}$

4. Describe how the graph of each function below is related to the graph of y = f(x).

a) y + 5 = -2f(x)

Compare y - k = af(b(x - h)) to y + 5 = -2f(x): k = -5, a = -2So, the graph of y = f(x) is vertically stretched by a factor of 2, reflected in the *x*-axis, then translated 5 units down.

b) y = f(3(x-4))

Compare y - k = af(b(x - h)) to y = f(3(x - 4); b = 3, h = 4So, the graph of y = f(x) is horizontally compressed by a factor of $\frac{1}{3}$, then translated 4 units right.

c)
$$y = \frac{1}{2}f(x + 7)$$

Compare y - k = af(b(x - h)) to $y = \frac{1}{2}f(x + 7)$: $a = \frac{1}{2}$, h = -7So, the graph of y = f(x) is vertically compressed by a factor of $\frac{1}{2}$, then translated 7 units left.

 $\mathbf{d}) y - 2 = f\left(\frac{1}{3}x\right)$

Compare y - k = af(b(x - h)) to $y - 2 = f(\frac{1}{3}x)$: $k = 2, b = \frac{1}{3}$

So, the graph of y = f(x) is horizontally stretched by a factor of 3, then translated 2 units up.

- **5.** The graph of y = f(x) is transformed as described below. Write the equation of the image graph in terms of the function *f*.
 - a) a horizontal compression by a factor of $\frac{1}{4}$, a reflection in the *y*-axis, and a translation of 3 units left

The equation of the image graph has the form: y - k = af(b(x - h))Since b = -4 and h = -3, the equation is: y = f(-4(x + 3))

b) a vertical compression by a factor of $\frac{1}{2}$, a reflection in the *y*-axis, and a translation of 7 units up

The equation of the image graph has the form: y - k = af(b(x - h))Since $a = \frac{1}{2}$, b = -1, and k = 7, the equation is: $y - 7 = \frac{1}{2}f(-x)$

c) a horizontal stretch by a factor of 5, a vertical compression by a factor of $\frac{1}{3}$, and a translation of 6 units left and 3 units up

In y - k = af(b(x - h)), substitute $b = \frac{1}{5}$, $a = \frac{1}{3}$, h = -6, and k = 3. The equation is: $y - 3 = \frac{1}{3}f(\frac{1}{5}(x + 6))$ **6.** Here is the graph of y = f(x). On the same grid, sketch and label its image after a vertical stretch by a factor of 3, and a translation of 4 units left and 2 units down.

В

Perform the vertical stretch by a factor of 3 first. Point (x, y) on y = f(x)corresponds to point (x, 3y) on the image graph y = 3f(x).

Point on $y = f(x)$	Point on $y = 3f(x)$
(-5, 3)	(-5, 9)
(-3, 1)	(-3, 3)
(1, 2)	(1, 6)
(3, -2)	(3, -6)

X

Plot the points, then join them in order with line segments to form the graph of y = 3f(x). Then translate this graph 4 units left and 2 units down to form the graph of y + 2 = 3f(x + 4).

7. Here is the graph of y = f(x). v + 13f(-(x)On the same grid, sketch the graph of each function below then state its domain and range. y = f(x)a) $y - 3 = -\frac{1}{2}f(2(x + 1))$ - Ŕ 0 Compare: y - k = af(b(x - h)) to $y-3=-\frac{1}{2}f(2(x+1))$ $\frac{1}{2}f(2(x+1))$ v - 3 = $k = 3, a = -\frac{1}{2}, b = 2, and h = -1$ (x, y) corresponds to $\left(\frac{x}{2} - 1, -\frac{1}{2}y + 3\right)$ Point on **Point on** $y - 3 = -\frac{1}{2}f(2(x + 1))$ y = f(x)(-3, 1) (-4, 4)(0, 0) (-1, 3)(4, 4) (1, 1)

The domain is: $x \in \mathbb{R}$ The range is: $y \leq 3$

b) y + 1 = 3f(-(x - 4))Compare: y - k = af(b(x - h)) to y + 1 = 3f(-(x - 4)) k = -1, a = 3, b = -1, and h = 4(x, y) corresponds to (-x + 4, 3y - 1)

Point on $y = f(x)$	Point on y + 1 = 3f(-(x - 4))
(-4, 4)	(8, 11)
(0, 0)	(4, -1)
(4, 4)	(0, 11)

The domain is: $x \in \mathbb{R}$ The range is: $y \ge -1$

8. On each grid, graph $y = \sqrt{x}$, apply transformations to sketch the given function, then state its domain and range.

a)
$$y = -\sqrt{x+2}$$

 $y = -\sqrt{x - (-2)}$ a = -1 and h = -2(x, y) corresponds to (x - 2, -y)

Point on $y = \sqrt{x}$	Point on $y = -\sqrt{x+2}$
(0, 0)	(-2, 0)
(1, 1)	(-1, -1)
(9, 3)	(7, -3)

	4 -	У						
	2 -	y	=	√x		-	-	-
		\subset						X
	- 01		1 2	2	4		6	5
	\sim	-	_	-				
	2	_		_	\ 	-	2	

Domain is: $x \ge -2$ Range is: $y \le 0$

k = -5, a	$-2\sqrt{3(x-1)}$ a = -2, b = 3, and h = 1 esponds to $\left(\frac{x}{3} + 1, -2y - 5\right)$	4
Point or $y = \sqrt{x}$		
(0, 0)	(1, -5)	
(1, 1)	$\left(\frac{4}{3}, -7\right)$	
(9, 3)	(4, -11)	

Domain is: $x \ge 1$ Range is: $y \le -5$ 9. The graph of y = g(x) is the image of the graph of y = f(x) after a combination of transformations. Corresponding points are labelled. Write an equation of each image graph in terms of the function f.

Write the equation for the image graph in the form y - k = af(b(x - h)). Use the points A(0, 9) and B(3, 0) on the graph of y = f(x). Horizontal distance between A and B is: 3 Vertical distance between A and B is: 9 Use corresponding points A'(1, -5) and B'(2, 4) on the graph of y = g(x). Horizontal distance between A' and B' is: 1 Vertical distance between A' and B' is: 9

The horizontal distance is one-third of the original distance, so the graph of y = f(x) is compressed horizontally by a factor of $\frac{1}{3}$: b = 3. The vertical distance does not change, so the graph of y = f(x) is not compressed or stretched vertically. From the graph, there is a reflection in the x-axis, so a = -1. To determine the coordinates of B(3, 0) after this compression and reflection, substitute: x = 3, y = 0, a = -1, and b = 3 in $(\frac{x}{b}, ay)$ to get $(\frac{3}{3}, 0)$, or (1, 0). Determine the translation that would move (1, 0) to B'(2, 4).

A translation of 1 unit right and 4 units up is required, so h = 1 and k = 4. An equation for the image graph is: y - 4 = -f(3(x - 1))

Write the equation for the image graph in the form y - k = af(b(x - h)). Use the points A(2, 8) and B(0, 0) on the graph of y = f(x). Horizontal distance between A and B is: 2 Vertical distance between A and B is: 8 Use corresponding points A'(-5, 6) and B'(-3, 2) on the graph of y = g(x). Horizontal distance between A' and B' is: 2

Vertical distance between A' and B' is: 4 The horizontal distance does not change, so the graph of y = f(x) is not compressed or stretched horizontally. From the graph, there is a reflection in the *y*-axis, so b = -1.

The vertical distance is halved, so the graph of y = f(x) is compressed vertically by a factor of $\frac{1}{2}$: $a = \frac{1}{2}$. To determine the coordinates of A(2, 8) after this compression and reflection, substitute: x = 2, y = 8,

$$b = -1$$
, and $a = \frac{1}{2} \ln \left(\frac{x}{b}, ay \right)$ to get $\left(\frac{2}{-1}, \frac{1}{2}, (8) \right)$, or $(-2, 4)$.

Determine the translation that would move (-2, 4) to A'(-5, 6). A translation of 3 units left and 2 units up is required, so h = -3 and k = 2. An equation for the image graph is: $y - 2 = \frac{1}{2}f(-(x + 3))$ **10.** For each pair of functions below, describe the graph of the second function as a transformation image of the graph of the first function.

a) y = |x| y + 6 = -2|3(x - 4)|

Let f(x) = |x|, then compare y + 6 = -2|3(x - 4)| to y - k = af(b(x - h)): k = -6, a = -2, b = 3, and h = 4. The graph of y + 6 = -2|3(x - 4)| is the image of the graph of y = |x| after a vertical stretch by a factor of 2, a horizontal compression by a factor of $\frac{1}{3}$, a reflection in the *x*-axis, followed by a translation of 4 units right and 6 units down.

b)
$$y = \frac{1}{x}$$
 $y - 3 = 2\left(\frac{5}{x+1}\right)$

Let $f(x) = \frac{1}{x}$, then compare $y - 3 = 2\left(\frac{5}{x+1}\right)$ to y - k = af(b(x-h)): k = 3, a = 2, b = 5, and h = -1. The graph of $y - 3 = 2\left(\frac{5}{x+1}\right)$ is the image of the graph of $y = \frac{1}{x}$ after a vertical stretch by a factor of 2, a horizontal compression by a factor of $\frac{1}{5}$, followed by a translation of 1 unit left and 3 units up.

c)
$$y = x^4$$
 $y + 1 = \frac{1}{4}[-2(x + 3)]^4$
Let $f(x) = x^4$, then compare $y + 1 = \frac{1}{4}[-2(x + 3)]^4$
to $y - k = af(b(x - h))$: $k = -1$, $a = \frac{1}{4}$, $b = -2$, and $h = -3$.
The graph of $y + 1 = \frac{1}{4}[-2(x + 3)]^4$ is the image of the graph of
 $y = x^4$ after a vertical compression by a factor of $\frac{1}{4}$, a horizontal
compression by a factor of $\frac{1}{2}$, a reflection in the y-axis, followed by a
translation of 3 units left and 1 unit down.

11. A transformation image of the graph of y = f(x) is represented by the equation $y - 1 = -2f\left(\frac{x+5}{3}\right)$. The point (7, 5) lies on the image graph. What are the coordinates of the corresponding point on the graph of y = f(x)?

Compare $y - 1 = -2f\left(\frac{x+5}{3}\right)$ to y - k = af(b(x - h)): $k = 1, a = -2, b = \frac{1}{3}$, and h = -5A point (x, y) on y = f(x) corresponds to the point (3x - 5, -2y + 1) on $y - 1 = -2f\left(\frac{x+5}{3}\right)$. The image of a point (x, y) is (7, 5). So, 3x - 5 = 7, or x = 4; and -2y + 1 = 5, or y = -2So, the corresponding point on y = f(x) is (4, -2). **12.** This graph is the image of the graph of y = |x| after a combination of transformations. Write an equation of the image.

Write the equation for the image graph in

the form y - k = a |b(x - h)|. Sketch the graph of y = |x|. Use the points A(0, 0) and B(1, 1) on the graph of y = |x|.

Horizontal distance between A and B is: 1

Vertical distance between A and B is: 1

Use corresponding points A'(-3, 4) and B'(-1, 3) on the image graph. Horizontal distance between A' and B' is: 2

Vertical distance between A' and B' is: 1

The horizontal distance is doubled, so the graph of y = |x| is stretched horizontally by a factor of 2 and $b = \frac{1}{2}$.

The vertical distance does not change, so the graph of y = |x| is not compressed or stretched vertically. From the graph, there is a reflection in the *x*-axis, so a = -1.

To determine the coordinates of B(1, 1) after this stretch and reflection,

substitute: $x = 1, y = 1, b = \frac{1}{2}$, and a = -1 in $(\frac{x}{b}, ay)$ to get (2, -1).

Determine the translation that would move (2, -1) to B'(-1, 3). A translation of 3 units left and 4 units up is required, so h = -3 and k = 4.

An equation for the image graph is: $y - 4 = -\left|\frac{1}{2}(x + 3)\right|$, or $y - 4 = -\frac{1}{2}|x + 3|$

Use mental math to check this equation, by verifying that the point (1, 2) lies on the graph.

