Checkpoint: Assess Your Understanding, pages 213-218

3.1

1. Multiple Choice The graph of $y=-3 x^{3}+4$ is translated 4 units right and 5 units down. What is an equation of the translation image?
A. $y=-3(x+4)^{3}+9$
B. $y=-3(x-4)^{3}+9$
C. $y=-3(x+4)^{3}-1$
D. $y=-3(x-4)^{3}-1$
2. Here is the graph of $y=g(x)$. On the same grid, sketch the graph of each function below. State the domain and range of each function.
a) $y-3=g(x)$

Compare the equation to
$y-k=g(x): k=3$
So, mark some lattice points on $y=g(x)$ and translate each point 3 units up. Both functions have domain: $x \in \mathbb{R}$ Both functions have range: $y \in \mathbb{R}$

b) $y=g(x+2)$

Write $y=g(x+2)$ as $y=g(x-(-2))$.
Compare the equation to $y=g(x-h): h=-2$
Translate each point on the graph of $y=g(x) 2$ units left.
The domain is: $x \in \mathbb{R}$
The range is: $y \in \mathbb{R}$
c) $y+1=g(x-3)$

Write $y+1=g(x-3)$ as $y-(-1)=g(x-3)$.
Compare the equation to $y-k=g(x-h): h=3$ and $k=-1$
Translate each point on the graph of $y=g(x) 3$ units right and
1 unit down.
The domain is: $x \in \mathbb{R}$
The range is: $y \in \mathbb{R}$
3. The graph of $y=f(x)$ was translated to create each graph below. Write an equation of each graph in terms of the function f.

a)

The graph of $y=f(x)$ has a local maximum at $(2,9)$.
This graph has a local maximum at $(-3,6)$.
So, the graph of $y=f(x)$ was translated 5 units left and 3 units down.
The equation of the image graph has the form:
$y-k=f(x-h)$, where
$h=-5$ and $k=-3$
So, an equation of the image
graph is: $y+3=f(x+5)$
b)

The graph of $y=f(x)$ has a local maximum at $(2,9)$.
This graph has a local maximum at $(5,11)$.
So, the graph of $y=f(x)$ was translated 3 units right and 2 units up.
The equation of the image graph has the form: $y-k=f(x-h)$, where $h=3$ and $k=2$
So, an equation of the image
graph is: $y-2=f(x-3)$

3.2

4. Multiple Choice The graph of $y=f(x)$ was reflected in the x-axis. Which graph below is its reflection image?

A.

(B.)

C.

D.

5. Here is the graph of $y=k(x)$. On the same grid, sketch and label the graph of each function below, then state its domain and range.
a) $y=-k(x)$

The graph of $y=-k(x)$ is the image of the graph of $y=\boldsymbol{k}(x)$ after a reflection in the x-axis.
Mark some lattice points on $y=k(x)$,

then reflect them in the x-axis. Mark these image points, then join them.
Domain: $x \in \mathbb{R}$
Range: $y \leq-2$
b) $y=k(-x)$

The graph of $y=k(-x)$ is the image of the graph of $y=k(x)$ after a reflection in the y-axis.
Mark some lattice points on $y=k(x)$, then reflect them in the y-axis. Mark these image points, then join them.
Domain: $x \in \mathbb{R}$
Range: $y \geq 2$
6. The graph of $y=-x^{3}+3 x^{2}-x+3$ was reflected in the y-axis and its image is shown. What is an equation of the image?
When the graph of $y=f(x)$ is reflected in the y-axis, the equation of its image is $y=f(-x)$.
So, an equation of the image is:
$y=f(-x)$
$y=-(-x)^{3}+3(-x)^{2}-(-x)+3$
$y=x^{3}+3 x^{2}+x+3$

3.3

7. Multiple Choice The point $(-6,2)$ lies on the graph of $y=f(x)$. After vertical and horizontal stretches or compressions of the graph, the equation of the image is $y=3 f(2 x)$. Which point is the image of $(-6,2)$?
(A.) $(-3,6)$
B. $(-12,6)$
C. $(-2,4)$
D. $(-18,1)$
8. Here is the graph of $y=h(x)$. On the same grid, sketch the graph of each function below, then state its domain and range.
a) $y=\frac{1}{3} h(-2 x)$

Compare $y=a h(b x)$ to
$y=\frac{1}{3} h(-2 x): a=\frac{1}{3}$ and $b=-2$

So, the graph of $y=h(x)$ is vertically compressed by a factor of $\frac{1}{3}$, horizontally compressed by a factor of $\frac{1}{2}$, then reflected in the y-axis. Use mental math and the transformation: (x, y) on $y=h(x)$ corresponds to $\left(\frac{x}{-2}, \frac{1}{3} y\right)$ on $y=\frac{1}{3} h(-2 x)$, to mark some image points, then join them.
Domain: $-4 \leq x \leq 2$; range: $-1 \leq y \leq 2$
b) $y=2 h(4 x)$

Compare $y=a h(b x)$ to $y=2 h(4 x): a=2$ and $b=4$
So, the graph of $y=h(x)$ is vertically stretched by a factor of 2 , and horizontally compressed by a factor of $\frac{1}{4}$. Use mental math and the transformation: (x, y) on $y=h(x)$ corresponds to $\left(\frac{x}{4}, 2 y\right)$ on $y=2 h(4 x)$, to mark some image points, then join them.
Domain: $-1 \leq x \leq 2$; range: $-6 \leq y \leq 12$
9. The graph of $y=g(x)$ is the image of the graph of $y=f(x)$ after a vertical and/or horizontal stretch and/or reflection. Corresponding points are labelled. Write an equation of the image graph in terms of the function f.

Point $\mathrm{A}(4,2)$ on $y=f(x)$ corresponds to point $\mathrm{A}^{\prime}(8,-6)$ on $y=g(x)$.
An equation for the image graph after a vertical or horizontal stretch or compression can be written in the form $y=a f(b x)$.
A point (x, y) on $y=f(x)$ corresponds to the point $\left(\frac{x}{b^{\prime}}, a y\right)$ on $y=a f(b x)$.
The image of $\mathrm{A}(4,2)$ is $\left(\frac{4}{b^{\prime}} a(2)\right)$, which is $\mathrm{A}^{\prime}(8,-6)$.
Equate the x-coordinates: $b=\frac{1}{2}$
Equate the y-coordinates: $a=-3$
So, an equation of $y=g(x)$ is: $y=-3 f\left(\frac{1}{2} x\right)$
I used the coordinates of B and B^{\prime}, and mental math to verify the equation.

