Checkpoint: Assess Your Understanding, pages 602-604

7.1

1. Multiple Choice How many roots does the equation $\sin 6x = \frac{1}{3}$ have over the domain $0 \le x < 2\pi$?

A. 2

B. 4

C. 6

(D) 12

2. Use graphing technology to solve each equation over the given domain. Give the roots to the nearest hundredth.

a) $1 + 2 \sin x = 1 - 3 \cos x$; $0 \le x \le 2\pi$

Graph the corresponding function: $y = 2 \sin x + 3 \cos x$ Determine the approximate zeros in the given domain. The roots are approximately: x = 2.16 and x = 5.30Substitute each root into the given equation to verify.

b) $2 = \cos x + 2 \cos^2 x$; $-2\pi \le x \le 2\pi$

Graph the corresponding function: $y = \cos x + 2\cos^2 x - 2$ Determine the approximate zeros in the given domain. The roots are approximately: $x = \pm 0.67$ and $x = \pm 5.61$ Substitute each root into the given equation to verify.

- **3.** Use graphing technology to determine the general solution of each equation over the set of real numbers. Give the answers to the nearest hundredth.
 - a) $4 \tan x 5 = 0$

Graph the corresponding function: $y = 4 \tan x - 5$

The period of the function is π .

Determine the zero in the domain $0 \le x < \pi$.

The root is approximately: x = 0.90

The general solution is approximately: $x = 0.90 + \pi k, k \in \mathbb{Z}$

b) $6 \cos^2 x + \cos x = 1$

Graph the corresponding function: $y = 6 \cos^2 x + \cos x - 1$

The period of the function is 2π .

Determine the zeros in the domain $0 \le x < 2\pi$.

The roots are approximately: x = 1.23, x = 2.09, x = 4.19, x = 5.05

The general solution is approximately: $x = 1.23 + 2\pi k$, $k \in \mathbb{Z}$ or

 $x = 2.09 + 2\pi k, k \in \mathbb{Z} \text{ or } x = 4.19 + 2\pi k, k \in \mathbb{Z} \text{ or } x = 5.05 + 2\pi k,$

 $k \in \mathbb{Z}$

7.2

4. Multiple Choice Which number is a root of the equation $3 \sin x + 1 = 5 \sin x - 1$ over the domain $0 \le x < 2\pi$?

 $\mathbf{A.0}$

- B. π
- $C.\frac{\pi}{2}$ D. $\frac{3\pi}{2}$
- **5.** Use algebra to solve the equation $\sqrt{2} \cos 2x + 1 = 0$ over the domain $-\pi < x < \pi$, then write the general solution of the equation.

$$\sqrt{2}\cos 2x = -1$$
$$\cos 2x = -\frac{1}{\sqrt{2}}$$

The terminal arm of angle 2x lies in Quadrant 2 or 3.

The reference angle for angle 2x is: $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$

In Quadrant 2, $2x = \frac{3\pi}{4}$ In Quadrant 3, $2x = -\frac{3\pi}{4}$ $x = \frac{3\pi}{8}$ $x = -\frac{3\pi}{8}$

$$x=\frac{3\pi}{8}$$

The period of $\cos 2x$ is π , so other roots are:

$$x = \frac{3\pi}{8} - \tau$$

$$x = -\frac{5\pi}{8}$$

$$x = \frac{5\pi}{9}$$

The roots are: $x = \pm \frac{3\pi}{8}$ and $x = \pm \frac{5\pi}{8}$

The general solution is: $x=\frac{3\pi}{8}+\pi k$, $k\in\mathbb{Z}$ or $x=\frac{5\pi}{8}+\pi k$, $k\in\mathbb{Z}$

6. Verify that $\frac{\pi}{6}$ and $\frac{5\pi}{6}$ are two roots of the equation $4\cos^2 x - 3 = 0$.

Substitute each given value in the equation.

For
$$x = \frac{\pi}{6}$$
:
L.S. = $4\cos^2(\frac{\pi}{6}) - 3$
= $4(\frac{\sqrt{3}}{2})^2 - 3$
= 0
= R.S.
For $x = \frac{5\pi}{6}$:
L.S. = $4\cos^2(\frac{5\pi}{6}) - 3$
= $4(-\frac{\sqrt{3}}{2})^2 - 3$
= 0
= R.S.

For each value of x, the left side is equal to the right side, so the roots are verified.

7. Use algebra to solve the equation $10 \sin^2 x + 11 \sin x = -3$ over the domain $90^\circ \le x \le 360^\circ$. Give the roots to the nearest degree.

$$10 \sin^2 x + 11 \sin x + 3 = 0$$
$$(2 \sin x + 1)(5 \sin x + 3) = 0$$

Either
$$2 \sin x + 1 = 0$$
 or $5 \sin x + 3 = 0$
 $\sin x = -0.5$ $\sin x = -0.6$

The reference angle is: $\sin^{-1}(0.5) = 30^{\circ}$ The terminal arm of angle x lies in Quadrant 3 or 4. The reference angle is: $\sin^{-1}(0.6) = 37^{\circ}$ The terminal arm of angle x lies in Quadrant 3 or 4.

In Quadrant 3,
$$x = 180^{\circ} + 30^{\circ}$$
, or 210° In Quadrant 3, $x = 180^{\circ} + 37^{\circ}$, or 217° In Quadrant 4, $x = 360^{\circ} - 30^{\circ}$, or 330° In Quadrant 4, $x = 360^{\circ} - 37^{\circ}$, or 323°

The roots are: $x = 210^{\circ}$, $x = 217^{\circ}$, $x = 323^{\circ}$, $x = 330^{\circ}$