Lesson 6.5 Exercises, pages 521–526

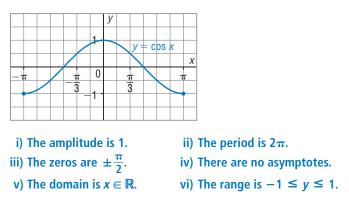
Α

- **3.** Identify the indicated characteristic of each function.
 - a) amplitude of $y = 5 \sin x$ b) amplitude of $y = 2 \cos x$ The amplitude is 5.The amplitude is 2.
 - c) period of $y = \sin 10x$ The period is: $\frac{2\pi}{10} = \frac{\pi}{5}$ The period is: $\frac{\pi}{4}$
 - e) phase shift of $y = \sin\left(x \frac{\pi}{7}\right)$ f) phase shift of $y = \cos\left(x + \frac{\pi}{12}\right)$ The phase shift is: $\frac{\pi}{7}$ The phase shift is: $-\frac{\pi}{12}$

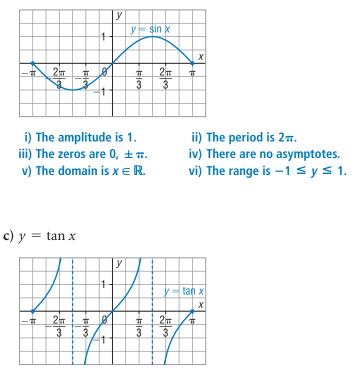
В

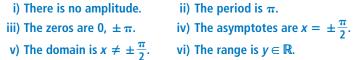
- **4.** For each function below, sketch the graph for $-\pi \le x \le \pi$, then identify each characteristic:
 - i) amplitude
- ii) period
- iii) zeros

- iv) equations of any asymptotes
- **v**) domain of the function **vi**) range of the function
- **a**) $y = \cos x$

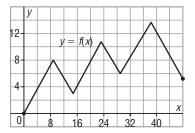


b) $y = \sin x$





5. Does this graph represent a periodic function? Explain.



No, the graph does not represent a periodic function because the graph does not repeat in regular intervals.

6. Use technology.

a) **i**) Graph each function.

 $y = 2\cos x$ $y = -3\cos x$ $y = \frac{1}{3}\cos x$

ii) How does varying the value of *a* affect the graph of $y = a \cos x$?

When a = 1, the graph is $y = \cos x$ with amplitude 1. As a varies, the amplitude varies. When a > 1, the graph of $y = \cos x$ is stretched vertically by a factor of a and the amplitude increases; when 0 < a < 1, the graph of $y = \cos x$ is compressed vertically by a factor of a and the amplitude decreases; when a < 0, the graph is also reflected in the x-axis.

b) **i**) Graph each function.

 $y = \sin 3x$ $y = \sin (-4x)$ $y = \sin \frac{3}{4}x$

ii) How does varying the value of *b* affect the graph of $y = \sin bx$?

When b = 1, the graph is $y = \sin x$ and its period is 2π . As b varies, the period of the graph varies. When b > 1, the graph of $y = \sin x$ is compressed horizontally by a factor of $\frac{1}{b}$ and the period decreases; when 0 < b < 1, the graph of $y = \sin x$ is stretched horizontally by a factor of $\frac{1}{b}$ and the period increases; when b < 0, the graph is also reflected in the *y*-axis.

c) i) Graph each function.

$$y = \cos\left(x - \frac{\pi}{6}\right)$$
 $y = \cos\left(x - \frac{\pi}{4}\right)$ $y = \cos\left(x + \frac{\pi}{3}\right)$

ii) How does varying the value of *c* affect the graph of $y = \cos (x - c)$?

When c = 1, the graph is $y = \cos x$ with phase shift 0. As c varies, the phase shift varies. When c > 0, the graph of $y = \cos x$ is translated c units right; when c < 0, the graph is translated c units left.

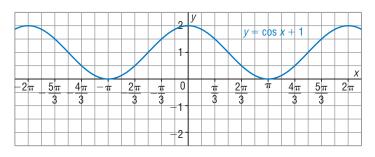
d) **i**) Graph each function.

 $y = \sin x + 1$ $y = \sin x - 2$ $y = \sin x + 0.5$

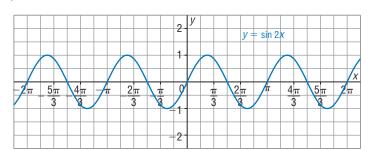
ii) How does varying the value of *d* affect the graph of $y = \sin x + d$?

When d = 0, the graph is $y = \sin x$. As d varies, the graph of $y = \sin x$ is translated vertically. When d > 0, the graph is translated d units up; when d < 0, the graph is translated d units down.

- 7. Sketch the graph of each function. Describe your strategy.
 - a) $y = \cos x + 1$

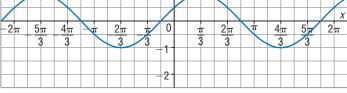


I used the completed table of values for $y = \cos x$ from Lesson 6.4, translated each point 1 unit up, extended the pattern, then drew a smooth curve through the points.



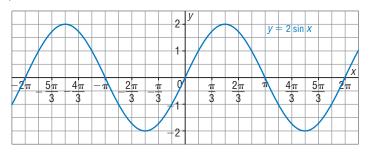
I used the completed table of values for $y = \sin x$ from Lesson 6.4, halved each *x*-coordinate, extended the pattern, then drew a smooth curve through the points.

c)
$$y = \cos\left(x - \frac{\pi}{3}\right)$$



3

I used the completed table of values for $y = \cos x$ from Lesson 6.4, translated each point $\frac{\pi}{3}$ units right, extended the pattern, then drew a smooth curve through the points.

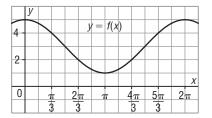


I used the completed table of values for $y = \sin x$ from Lesson 6.4, doubled each *y*-coordinate, extended the pattern, then drew a smooth curve through the points.

8. Use technology to graph $y = \sin\left(x + \frac{\pi}{2}\right)$ and $y = \cos x$. Explain the result.

The graphs coincide. The graph of $y = \cos x$ is the image of the graph of $y = \sin x$ after a horizontal translation of $\frac{\pi}{2}$ units left; that is, for any angle x radians, $\cos x = \sin \left(x + \frac{\pi}{2}\right)$.

9. A student says that the amplitude of this sinusoidal function is 5. Is the student correct? Explain.

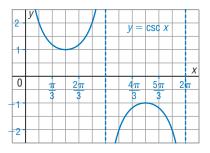


No, the amplitude is one-half of the vertical distance between a maximum point and a minimum point, which is 2.

С

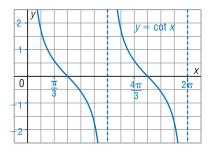
10. Sketch the graph of each function. Identify its characteristics.

a)
$$y = \csc x$$



Take the reciprocal of each *x*-value in the completed table for $y = \sin x$ in Lesson 6.4, plot the points, extend the pattern, then join the points with 2 smooth curves. There is no amplitude. The period is 2π . There are no zeros. The equations of the asymptotes are $x = k\pi$, $k \in \mathbb{Z}$. The domain is $x \neq k\pi$, $k \in \mathbb{Z}$. The range is $y \ge 1$ or $y \le -1$.

b) $y = \cot x$



Take the reciprocal of each x-value in the completed table for $y = \tan x$ in Lesson 6.4, plot the points, extend the pattern, then join the points with 2 smooth curves. There is no amplitude. The period is π . The zeros are $(2k + 1)\frac{\pi}{2}$, $k \in \mathbb{Z}$. The equations of the asymptotes are $x = k\pi$, $k \in \mathbb{Z}$. The domain is $x \neq k\pi$, $k \in \mathbb{Z}$. The range is $y \in \mathbb{R}$.

11. Use technology. Graph the function $y = \sin x + \cos x$. Is it periodic? Explain. Is it sinusoidal? Explain.

The function is periodic because its values repeat at regular intervals. The function is sinusoidal because its maximum and minimum values are equidistant from the centre line.