## Lesson 6.6 Exercises, pages 534-539

A
3. Identify the transformations that would be applied to the graph of $y=\sin x$ to get the graph of $y=10 \sin \frac{1}{3}(x-\pi)+1$.
Compare $y=10 \sin \frac{1}{3}(x-\pi)+1$ with $y=a \sin b(x-c)+d$ :
$a=10$, so the graph of $y=\sin x$ is stretched vertically by a factor of 10 .
$b=\frac{1}{3}$, so the graph of $y=\sin x$ is stretched horizontally by a factor of 3 .
$c=\pi$, so the graph of $y=\sin x$ is translated $\pi$ units right.
$d=1$, so the graph of $y=\sin x$ is translated 1 unit up.
4. Identify the following characteristics of the graph below: amplitude; period; phase shift; equation of the centre line; zeros; domain; maximum value; minimum value; range


The amplitude is 2 . The period is $4 \pi$. The phase shift is $\frac{\pi}{6}$. The equation of the centre line is $y=0$. The zeros are $-\frac{11 \pi}{6}$ and $\frac{\pi}{6}$. The graph is shown on domain $-2 \pi \leq x \leq 2 \pi$. The maximum value is 2 . The minimum value is -2 . The range is $-2 \leq y \leq 2$.
5. Use the given data to write an equation for each function.
a) a sine function with: amplitude 5 ; period $3 \pi$; equation of centre line $y=-2$; and phase shift $\frac{\pi}{3}$

Use: $y=a \sin b(x-c)+d$
Since the period $=\frac{2 \pi}{b}$, then $b=\frac{2 \pi}{3 \pi}$, or $\frac{2}{3}$
In $y=a \sin b(x-c)+d$, substitute: $a=5, b=\frac{2}{3}, c=\frac{\pi}{3}, d=-2$
An equation is: $y=5 \sin \frac{2}{3}\left(x-\frac{\pi}{3}\right)-2$
b) a cosine function with: maximum value 5 ; minimum value -2 ;
period $\pi$; and phase shift $-\frac{\pi}{4}$
Use: $y=a \cos b(x-c)+d$
From the maximum and minimum values, $a=\frac{5-(-2)}{2}$, or 3.5
From the period, $b=\frac{2 \pi}{\pi}$, or 2
From the maximum value and the amplitude, $d=5-3.5$, or 1.5
In $y=a \cos b(x-c)+d$, substitute: $a=3.5, b=2, c=-\frac{\pi}{4}, d=1.5$
An equation is: $y=3.5 \cos 2\left(x+\frac{\pi}{4}\right)+1.5$
6. Determine a possible equation for each function graphed below.
a)

Sample response: The graph is the image of $y=\sin x$ after a vertical compression by a factor of $\frac{1}{2}$.
An equation is: $y=\frac{1}{2} \sin x$
b)


Sample response:
The graph is the image of $y=\cos x$ after a vertical translation of 2 units down. An equation is: $y=\cos x-2$
c)


Sample response:
The graph is the image of $y=\cos x$ after a horizontal compression by a factor of $\frac{1}{4}$.
An equation is: $y=\cos 4 x$
d)


## Sample response:

The graph is the image of $y=\cos x$ after a horizontal translation of $\frac{\pi}{3}$ units right.
An equation is: $y=\cos \left(x-\frac{\pi}{3}\right)$
7. a) For the function graphed below, identify the values of $a, b, c$, and $d$ in $y=a \sin b(x-c)+d$, then write an equation for the function.


Sample response: The equation of the centre line is $y=4$, so the vertical translation is 4 units up and $d=4$.
The amplitude is: $\frac{6-2}{2}=2$, so $a=2$
Choose the $x$-coordinates of two adjacent maximum points, such as $\frac{\pi}{6}$
and $\frac{5 \pi}{6}$. The period is: $\frac{5 \pi}{6}-\frac{\pi}{6}=\frac{2 \pi}{3}$
So, $b$ is: $\frac{2 \pi}{\frac{2 \pi}{3}}=3$
$\frac{2 \pi}{3}$
The sine function begins its cycle at $x=0$; so the phase shift is 0 , and $c=0$.
Substitute for $a, b, c$, and $d$ in: $y=a \sin b(x-c)+d$
An equation is: $y=2 \sin 3 x+4$
b) For the function graphed below, identify the values of $a, b, c$, and $d$ in $y=a \cos b(x-c)+d$, then write an equation for the function.


Sample response: The equation of the centre line is $y=-1$, so the vertical translation is 1 unit down and $d=-1$.
The amplitude is: $\frac{-0.5-(-1.5)}{2}=0.5$, so $a=\frac{1}{2}$
Choose the $x$-coordinates of two adjacent maximum points, such as $\frac{\pi}{8}$ and $\frac{5 \pi}{8}$. The period is: $\frac{5 \pi}{8}-\frac{\pi}{8}=\frac{\pi}{2}$
So, $b$ is: $\frac{2 \pi}{\frac{\pi}{2}}=4$
To the right of the $y$-axis, the cosine function begins its cycle at $x=\frac{\pi}{8}$, so the phase shift is $\frac{\pi}{8}$, and $c=\frac{\pi}{8}$.
Substitute for $a, b, c$, and $d$ in: $y=a \cos b(x-c)+d$
An equation is: $y=\frac{1}{2} \cos 4\left(x-\frac{\pi}{8}\right)-1$
8. a) The graph of $y=\sin x$ is shown below. On the same grid, sketch the graph of $y=2 \sin 3\left(x-\frac{\pi}{2}\right)+3$. Describe your strategy.


The graph of $y=\sin x$ is: stretched vertically by a factor of 2, compressed horizontally by a factor of $\frac{1}{3}$, then translated $\frac{\pi}{2}$ units right and 3 units up
I chose points on the graph of $y=\sin x$, applied the transformations to each point, then joined the image points.
b) List the characteristics of the function $y=2 \sin 3\left(x-\frac{\pi}{2}\right)+3$. The amplitude is 2 ; the period is $\frac{2 \pi}{3}$; the phase shift is $\frac{\pi}{2}$; the domain is $x \in \mathbb{R}$; the range is $1 \leq y \leq 5$; there are no zeros.
9. a) The graph of $y=\cos x$ is shown below. On the same grid, sketch the graph of $y=\cos 4\left(x+\frac{\pi}{3}\right)-2$. Describe your strategy.


The graph of $y=\cos x$ is: compressed horizontally by a factor of $\frac{1}{4}$, then translated $\frac{\pi}{3}$ units left and 2 units down.
I first graphed $y=\cos 4 x$, then chose points on this graph and applied the remaining transformations to each point. I continued the pattern of image points, then joined them.
b) List the characteristics of the function $y=\cos 4\left(x+\frac{\pi}{3}\right)-2$.

The amplitude is 1 ; the period is $\frac{2 \pi}{4}=\frac{\pi}{2}$; the phase shift is $-\frac{\pi}{3}$;
the domain is $x \in \mathbb{R}$; the range is $-3 \leq y \leq-1$; there are no zeros.
10. Sketch the graph of each function for the domain $-2 \pi \leq x \leq 2 \pi$.
a) $y=4 \sin \frac{1}{2}\left(x-\frac{\pi}{3}\right)-3$


Sketch the graph of $y=4 \sin \frac{1}{2} x$, then translate it $\frac{\pi}{3}$ units right and 3 units down.
b) $y=\frac{1}{3} \cos 2\left(x+\frac{\pi}{4}\right)+1$


Sketch the graph of $y=\frac{1}{3} \cos 2 x$, then translate it $\frac{\pi}{4}$ units left and 1 unit up.

## C

11. Use transformations to sketch the graph of $y=-2 \sin \left(2 x+\frac{\pi}{3}\right)-2$ for $-2 \pi \leq x \leq 2 \pi$.


Write the function as $y=-2 \sin 2\left(x+\frac{\pi}{6}\right)-2$.
Sketch the graph of $y=2 \sin 2 x$, reflect it in the $x$-axis to get the graph of $y=-2 \sin 2 x$, then translate this graph $\frac{\pi}{6}$ units left and 2 units down.

