Lesson 6.6 Exercises, pages 534–539

Α

3. Identify the transformations that would be applied to the graph of $y = \sin x$ to get the graph of $y = 10 \sin \frac{1}{3}(x - \pi) + 1$.

Compare $y = 10 \sin \frac{1}{3}(x - \pi) + 1$ with $y = a \sin b(x - c) + d$:

a = 10, so the graph of $y = \sin x$ is stretched vertically by a factor of 10.

 $b = \frac{1}{3}$, so the graph of $y = \sin x$ is stretched horizontally by a factor of 3.

 $c = \pi$, so the graph of $y = \sin x$ is translated π units right.

d = 1, so the graph of $y = \sin x$ is translated 1 unit up.

4. Identify the following characteristics of the graph below: amplitude; period; phase shift; equation of the centre line; zeros; domain; maximum value; minimum value; range

The amplitude is 2. The period is 4π . The phase shift is $\frac{\pi}{6}$. The equation of the centre line is y = 0. The zeros are $-\frac{11\pi}{6}$ and $\frac{\pi}{6}$. The graph is shown on domain $-2\pi \le x \le 2\pi$. The maximum value is 2. The minimum value is -2. The range is $-2 \le y \le 2$.

В

- 5. Use the given data to write an equation for each function.
 - a) a sine function with: amplitude 5; period 3π ; equation of centre line y = -2; and phase shift $\frac{\pi}{3}$

Use: $y = a \sin b(x - c) + d$ Since the period $= \frac{2\pi}{b}$, then $b = \frac{2\pi}{3\pi}$, or $\frac{2}{3}$ In $y = a \sin b(x - c) + d$, substitute: a = 5, $b = \frac{2}{3}$, $c = \frac{\pi}{3}$, d = -2An equation is: $y = 5 \sin \frac{2}{3} \left(x - \frac{\pi}{3}\right) - 2$

b) a cosine function with: maximum value 5; minimum value -2; period π ; and phase shift $-\frac{\pi}{4}$

Use: $y = a \cos b(x - c) + d$ From the maximum and minimum values, $a = \frac{5 - (-2)}{2}$, or 3.5 From the period, $b = \frac{2\pi}{\pi}$, or 2 From the maximum value and the amplitude, d = 5 - 3.5, or 1.5 In $y = a \cos b(x - c) + d$, substitute: a = 3.5, b = 2, $c = -\frac{\pi}{4}$, d = 1.5An equation is: $y = 3.5 \cos 2\left(x + \frac{\pi}{4}\right) + 1.5$

6. Determine a possible equation for each function graphed below.

a)	, y	Sample response: The graph is
	y = f(x)	the image of $y = \sin x$ after a
		Vertical compression by a
	$0 \pi 2\pi \pi - 2\pi$	
	1 3 3	$\frac{1}{2}$
-		An equation is: $y = \frac{1}{2} \sin x$
		An equation is: $y = \frac{1}{2} \sin x$

Sample response: The graph is the image of $y = \cos x$ after a vertical translation of 2 units down. An equation is: $y = \cos x - 2$

7. a) For the function graphed below, identify the values of *a*, *b*, *c*, and $d \text{ in } y = a \sin b(x - c) + d$, then write an equation for the function.

Sample response: The equation of the centre line is y = 4, so the vertical translation is 4 units up and d = 4.

The amplitude is: $\frac{6-2}{2} = 2$, so a = 2

Choose the *x*-coordinates of two adjacent maximum points, such as $\frac{\pi}{6}$ and $\frac{5\pi}{6}$. The period is: $\frac{5\pi}{6} - \frac{\pi}{6} = \frac{2\pi}{3}$

So, *b* is:
$$\frac{2\pi}{\frac{2\pi}{3}} = 3$$

The sine function begins its cycle at x = 0; so the phase shift is 0, and c = 0. Substitute for *a*, *b*, *c*, and *d* in: $y = a \sin b(x - c) + d$ An equation is: $y = 2 \sin 3x + 4$ **b**) For the function graphed below, identify the values of *a*, *b*, *c*, and $d \text{ in } y = a \cos b(x - c) + d$, then write an equation for the function.

Sample response: The equation of the centre line is y = -1, so the vertical translation is 1 unit down and d = -1. The amplitude is: $\frac{-0.5 - (-1.5)}{2} = 0.5$, so $a = \frac{1}{2}$

The amplitude is: $\frac{1}{2} = 0.5$, so $a = \frac{1}{2}$ Choose the *x*-coordinates of two adjacent maximum points, such as $\frac{\pi}{8}$ and $\frac{5\pi}{8}$. The period is: $\frac{5\pi}{8} - \frac{\pi}{8} = \frac{\pi}{2}$

So, b is:
$$\frac{2\pi}{\frac{\pi}{2}} = 4$$

To the right of the *y*-axis, the cosine function begins its cycle at $x = \frac{\pi}{8}$, so the phase shift is $\frac{\pi}{8}$, and $c = \frac{\pi}{8}$. Substitute for *a*, *b*, *c*, and *d* in: $y = a \cos b(x - c) + d$ An equation is: $y = \frac{1}{2} \cos 4\left(x - \frac{\pi}{8}\right) - 1$

8. a) The graph of $y = \sin x$ is shown below. On the same grid, sketch the graph of $y = 2 \sin 3\left(x - \frac{\pi}{2}\right) + 3$. Describe your strategy.

The graph of $y = \sin x$ is: stretched vertically by a factor of 2, compressed horizontally by a factor of $\frac{1}{3}$, then translated $\frac{\pi}{2}$ units right and 3 units up I chose points on the graph of $y = \sin x$, applied the transformations to each point, then joined the image points. **b**) List the characteristics of the function $y = 2 \sin 3\left(x - \frac{\pi}{2}\right) + 3$.

The amplitude is 2; the period is $\frac{2\pi}{3}$; the phase shift is $\frac{\pi}{2}$; the domain is $x \in \mathbb{R}$; the range is $1 \le y \le 5$; there are no zeros.

9. a) The graph of $y = \cos x$ is shown below. On the same grid, sketch the graph of $y = \cos 4\left(x + \frac{\pi}{3}\right) - 2$. Describe your strategy.

The graph of $y = \cos x$ is: compressed horizontally by a factor of $\frac{1}{4}$, then translated $\frac{\pi}{3}$ units left and 2 units down. I first graphed $y = \cos 4x$, then chose points on this graph and applied the remaining transformations to each point. I continued the pattern of image points, then joined them.

b) List the characteristics of the function $y = \cos 4\left(x + \frac{\pi}{3}\right) - 2$. The amplitude is 1; the period is $\frac{2\pi}{4} = \frac{\pi}{2}$; the phase shift is $-\frac{\pi}{3}$; the domain is $x \in \mathbb{R}$; the range is $-3 \le y \le -1$; there are no zeros.

- **10.** Sketch the graph of each function for the domain $-2\pi \le x \le 2\pi$.
 - **a**) $y = 4 \sin \frac{1}{2} \left(x \frac{\pi}{3} \right) 3$

Sketch the graph of $y = 4 \sin \frac{1}{2}x$, then translate it $\frac{\pi}{3}$ units right and 3 units down.

Sketch the graph of $y = \frac{1}{3} \cos 2x$, then translate it $\frac{\pi}{4}$ units left and 1 unit up.

С

11. Use transformations to sketch the graph of $y = -2 \sin\left(2x + \frac{\pi}{3}\right) - 2$ for $-2\pi \le x \le 2\pi$.

Write the function as $y = -2 \sin 2\left(x + \frac{\pi}{6}\right) - 2$.

Sketch the graph of $y = 2 \sin 2x$, reflect it in the *x*-axis to get the graph of $y = -2 \sin 2x$, then translate this graph $\frac{\pi}{6}$ units left and 2 units down.