REVIEW, pages 444-452

5.1

1. Complete the table of values, then graph $y = \left(\frac{1}{4}\right)^x$.

x	-2	-1	0	1	2
у	16	4	1	0.25	0.0625

5.2

2. a) Graph $y = 3.5^x$ for $-2 \le x \le 2$.

Make a table of values. Write the coordinates to the nearest hundredth.

x	-2	-1	0	1	2
у	0.08	0.29	1	3.5	12.25

- **b**) Determine:
 - i) whether the function is increasing or decreasing

The function is increasing.

ii) the intercepts

There is no *x*-intercept; the *y*-intercept is 1.

iii) the equation of the asymptote

The asymptote has equation y = 0.

iv) the domain of the function

The domain is $x \in \mathbb{R}$.

v) the range of the function The range is y > 0.

- **3.** Use technology to graph each function below. For each graph:
 - i) identify the intercepts
 - **ii**) identify the equation of the asymptote and state why it is significant

a)
$$y = 0.8^x$$
 b) $y =$

- i) There is no *x*-intercept. The *y*-intercept is 1.
- ii) The equation of the asymptote is y = 0. This is the line that the graph approaches as x increases.

The *y*-intercept is 1.
ii) The equation of the asymptote is y = 0.
This is the line that the graph approaches as x decreases.

i) There is no x-intercept.

 2.75^{x}

4. a) Sketch the graph of
$$y = -\frac{1}{2}(3^{2x}) - 1$$
.

Write the function as: $y + 1 = -\frac{1}{2}(3^{2x})$ Compare $y + 1 = -\frac{1}{2}(3^{2x})$ with $y - k = c3^{d(x - h)}$: $k = -1, c = -\frac{1}{2}, d = 2$, and h = 0Use the general transformation: (x, y) corresponds to $(\frac{x}{d} + h, cy + k)$ The point (x, y) on $y = 3^x$ corresponds to the point $(\frac{x}{2}, -\frac{1}{2}y - 1)$ on $y + 1 = -\frac{1}{2}(3^{2x})$. Choose points (x, y) on $y = 3^x$.

-1, -<u>19</u>

 $\frac{1}{2}, -\frac{7}{6}$

<u>3</u> 2

<u>5</u> 2

<u>11</u>

2

(0,

2'

1,

(x, y)

 $-2, \frac{1}{9}$

 $(-1, \frac{1}{3})$

(0, 1)

(1, 3)

(2, 9)

- **b**) From the graph, identify:
 - i) whether the function is increasing or decreasing

The function is decreasing.

ii) the intercepts

There is no x-intercept. From the table, the y-intercept is -1.5.

iii) the equation of the asymptote

The asymptote has equation y = -1.

iv) the domain of the function

The domain of the function is $x \in \mathbb{R}$.

v) the range of the function

The range of the function is y < -1.

5.3

5. Solve each equation.

a) $4^{x} = 128$ $2^{2x} = 2^{7}$ 2x = 7 x = 3.5b) $27^{x+1} = 81^{x-2}$ $3^{3(x+1)} = 3^{4(x-2)}$ 3x + 3 = 4x - 8x = 11

c) $9^{x} = 27 \sqrt[4]{3}$ $3^{2x} = (3^{3})(3^{\frac{1}{4}})$ 2x = 3.25 x = 1.625c) $9^{x} = 27 \sqrt[4]{3}$ ($2^{\frac{1}{3}})(2^{-3}) = 2^{2x}$ $-\frac{8}{3} = 2x$ $x = -\frac{4}{3}$

6. Solve the equation $1.04^{2x} = 2$. Give the solution to the nearest tenth.

Use technology to graph $y = 1.04^{2x}$ and y = 2. Determine the approximate *x*-coordinate of the point of intersection: 8.8364938 The solution is: x = 8.8

- 7. A new combine, used for harvesting wheat, costs \$370 000. Its value depreciates by 10% each year. The value of the combine, *v* thousands of dollars, after *t* years can be modelled by this function: v = 370(0.9)^t
 - **a**) What is the value of the combine when it is 5 years old? Give the answer to the nearest thousand dollars.

Use technology to graph $y = 370(0.9)^x$ for 0 < x < 15. Press: TRACE 5 ENTER to display: X = 5 Y = 218.4813 After 5 years, the value of the combine is approximately \$218 000.

b) When will the combine be worth \$100 000? Give the answer to the nearest half year.

```
Graph y = 100 on the same screen as y = 370(0.9)^{x}.
Use 5: intersect from the CALC menu to display:
X = 12.417677   Y = 100
The combine will be worth $100 000 after approximately 12.5 years.
```

8. A principal of \$2500 is invested at 3% annual interest, compounded semi-annually. To the nearest year, how long will it be until the amount is \$3000?

```
Use the formula:
```

```
A = A_0 \left(1 + \frac{i}{n}\right)^{nt} Substitute: A = 3000, A_0 = 2500, i = 0.03, n = 2

3000 = 2500(1.015)^{2t}
Use technology to graph y = 2500(1.015)^{2x} and y = 3000 for 0 < x < 10.

Use 5: intersect from the CALC menu to display:

X = 6.1228525 Y = 3000

After approximately 6 years, the amount will be $3000.
```

5.4

9. a) Write each logarithmic expression as an exponential expression.

i) $\log_3 729 = 6$ The base is 3. The exponent is 6. So, 729 = 3⁶ ii) $\log_4 2\sqrt{2} = \frac{3}{4}$ The base is 4. The exponent is $\frac{3}{4}$. So, $2\sqrt{2} = 4^{\frac{3}{4}}$ b) Write each exponential expression as a logarithmic expression.

10. For each logarithm below, determine its exact value or use benchmarks to determine its approximate value to the nearest tenth.

a) log ₇ 343	b) log ₈ 100
$= \log_7(7^3)$ = 3	Identify powers of 8 close to 100. $8^2 = 64$ and $8^3 = 512$ So, 2 < log ₈ 100 < 3 An estimate is: log ₈ 100 \doteq 2.2 Check. $8^{2.2} \doteq 97.00586026$ $8^{2.3} \doteq 119.4282229$ So, log ₈ 100 \doteq 2.2
c) $\log_2 20$	d) $\log_4\left(\frac{1}{32}\right)$

Identify powers of 2
close to 20. $= \log_4(2^{-5})$
 $= \log_4(4^{\frac{1}{2}})^{-5}$ $2^4 = 16$ and $2^5 = 32$
So, $4 < \log_2 20 < 5$
An estimate is: $\log_2 20 = 4.3$
Check. $= \log_4(4^{-\frac{5}{2}})$
 $= -\frac{5}{2}$ $2^{4.3} = 19.69831061$
 $2^{4.4} = 21.11212657$ $= -\frac{5}{2}$

11. a) Graph $y = \log_6 x$.

So, $\log_2 20 \doteq 4.3$

Determine values for $y = 6^x$, then interchange the coordinates for the table of values for $y = \log_e x$.

b) Identify the intercepts and the equation of the asymptote of the graph, and the domain and range of the function.

There is no *y*-intercept. The *x*-intercept is 1. The asymptote has equation x = 0. The domain is x > 0. The range is $y \in \mathbb{R}$.

c) How could you use the graph of $y = \log_6 x$ to graph $y = 6^x$? Use your strategy to graph $y = 6^x$ on the grid in part a.

I reflect points on the graph of $y = \log_6 x$ in the line y = x, then join the points for the graph of $y = 6^x$.

5.5

12. Write each expression as a single logarithm.

a) $3 \log x + \frac{1}{2} \log y - 2 \log z$ $= \log x^3 + \log y^{\frac{1}{2}} - \log z^2$ $= \log \left(\frac{x^3 y^{\frac{1}{2}}}{z^2}\right)$ b) $4 + \log_2 3$ $= \log_2 16 + \log_2 3$ $= \log_2 48$

13. Evaluate: $2 \log_4 6 - \log_4 18 + \log_4 8$

```
= \log_4 6^2 + \log_4 8 - \log_4 18
= \log_4 \left(\frac{36 \cdot 8}{18}\right)
= \log_4 16
= \log_4 4^2
= 2
```

5.6

14. Approximate the value of each logarithm, to the nearest thousandth.

```
a) \log_5 600

b) \log_3 0.1

\log_5 600 = \frac{\log 600}{\log 5}

= 3.9746...

\doteq 3.975

b) \log_3 0.1 = \frac{\log 0.1}{\log 3}

= -2.0959...

\doteq -2.096
```

15. Use technology to graph $y = \log_9 x$. Identify the intercepts and the equation of the asymptote of the graph, and the domain and range of the function.

Graph: $y = \frac{\log x}{\log 9}$

Use the zero feature from the CALC menu; the *x*-intercept is 1. There is no *y*-intercept. The equation of the asymptote is x = 0.

The domain of the function is x > 0. The range of the function is $y \in \mathbb{R}$.

16. a) Sketch the graph of $y = \log_5(3x - 6) + 3$.

Write $y = \log_5(3x - 6) + 3$ as $y - 3 = \log_5 3(x - 2)$. Compare $y - 3 = \log_5 3(x - 2)$ with $y - k = c \log_5 d(x - h)$: k = 3, c = 1, d = 3, and h = 2Use the general transformation: (x, y) corresponds to $\left(\frac{x}{d} + h, cy + k\right)$

The point (x, y) on $y = \log_5 x$ corresponds to the point $\left(\frac{x}{3} + 2, y + 3\right)$ on $y = \log_5(3x - 6) + 3$.

(<i>x</i> , <i>y</i>)	$\left(\frac{x}{3}+2, y+3\right)$
$\left(\frac{1}{25'}, -2\right)$	$\left(\frac{151}{75}, 1\right)$
$\left(\frac{1}{5}, -1\right)$	$\left(\frac{31}{15}, 2\right)$
(1, 0)	(<u>7</u> , 3)
(5, 1)	$\left(\frac{11}{3}, 4\right)$

b) Identify the intercepts and the equation of the asymptote of the graph of $y = \log_5(3x - 6) + 3$, and the domain and range of this function.

There is no y-intercept. For the x-intercept, substitute y = 0 in $y = \log_5(3x - 6) + 3$, then solve for x. $0 = \log_5(3x - 6) + 3$ $\log_5(3x - 6) = -3$ $3x - 6 = 5^{-3}$ $3x = 6 + \frac{1}{125}$ $3x = \frac{751}{125}$ $x = \frac{751}{375}$ The equation of the asymptote is x = 2. The domain of the function is x > 2. The range of the function is $y \in \mathbb{R}$.

5.7

17. Solve, then verify each logarithmic equation.

a) $3 = \log_2(x+5) + \log_2(x+7)$ **b**) $\log x + \log (x + 1) = \log (7x - 8)$ $x > 0, x > -1, x > \frac{8}{7}$; so $x > \frac{8}{7}$ x > -5 and x > -7; so x > -5 $3 = \log_{x}(x + 5)(x + 7)$ $\log x(x + 1) = \log (7x - 8)$ $2^3 = (x + 5)(x + 7)$ x(x + 1) = 7x - 8 $x^2 + 12x + 27 = 0$ $x^2 - 6x + 8 = 0$ (x + 9)(x + 3) = 0(x-2)(x-4)=0x = -9 or x = -3x = 2 or x = 4x = -9 is extraneous. Verify x = 2: Verify: x = -3 $L.S. = \log 6$ $R.S. = \log 6$ $R.S. = \log_2 2 + \log_2 4$ The solution is verified. = 1 + 2 Verify x = 4: = 3 $L.S. = \log 20$ $R.S. = \log 20$ = L.S.The solution is verified. The solution is verified.

18. Solve each equation algebraically. Give the solution to the nearest hundredth.

a) $5(3^{x}) = 60$ $3^{x} = 12$ $\log_{3}3^{x} = \log_{3}12$ $x = \frac{\log 12}{\log 3}$ $x \doteq 2.26$ b) $3^{x+4} = \log 5^{x+1}$ $\log 3^{x+4} = \log 5^{x+1}$ $(x + 4)\log 3 = (x + 1)\log 5$ $x \log 3 + 4 \log 3 = x \log 5 + \log 5$ $x(\log 3 - \log 5) = \log 5 - 4 \log 3$ $x = \frac{\log 5 - 4 \log 3}{\log 3 - \log 5}$ $x \doteq 5.45$

5.8

- **19.** The pH of a solution can be described by the equation $pH = -\log [H^+]$, where $[H^+]$ is the hydrogen-ion concentration in moles/litre.
 - a) Determine the hydrogen-ion concentration in pure water with a pH of 7.

```
Substitute pH = 7 in the equation: pH = -\log [H^+]
7 = -\log [H^+] Write in exponential form.
[H^+] = 10^{-7}
The hydrogen-ion concentration of pure water is 10^{-7} moles/litre.
```

b) How are the hydrogen-ion concentrations of these liquids related: black coffee with a pH of 5 and pure water?

```
For the hydrogen-ion concentration of black coffee, substitute pH = 5 in
the equation: pH = -\log [H^+]
5 = -\log [H^+] Write in exponential form.
[H^+] = 10^{-5}
The hydrogen-ion concentration of black coffee is 10^{-5} moles/litre.
\frac{10^{-5}}{10^{-7}} = 10^2, or 100
So, black coffee has 100 times as many hydrogen ions per litre as pure
```

water.