PRACTICE TEST, pages 154-156

1. Multiple Choice Which graph represents $y=\sqrt{-0.5 x-2}$?

					y						
A											C
B											D
											x
	-12	-8	-4	0		4		8		12	

2. Multiple Choice Which statement about the graph of $y=\frac{x^{2}-5 x+6}{x-3}$ is true?
A. There is a vertical asymptote with equation $y=3$.
B. There is an oblique asymptote with equation $y=x-2$.
C. There is a horizontal asymptote with equation $x=2$.
(D.) There is a hole at $(3,1)$.
3. Without using graphing technology, graph the function
$y=\frac{x^{2}+3 x+2}{x^{2}-x-2}$. Identify any non-permissible values of x, the equations of any asymptotes, and the domain.

Factor: $y=\frac{(x+1)(x+2)}{(x+1)(x-2)}$
There is a common factor $(x+1)$, so there is a hole at: $x=-1$
There is a vertical asymptote with equation $x=2$.
The function is: $y=\frac{x+2}{x-2}, x \neq-1$
The y-coordinate of the hole is: $y=-\frac{1}{3}$
There is a horizontal asymptote. Both the leading coefficients are 1 , so the
 horizontal asymptote has equation $y=1$.
Choose other points and those close to the asymptotes:

x	4	6	1.99	2.01	-100	100
y	3	2	-399	401	0.96	1.04

Some of the y-values above are approximate.
The y-intercept is $\mathbf{- 1}$. The x-intercept is $\mathbf{- 2}$.
Plot points at the intercepts. Draw an open
circle at the hole. Draw broken lines
for the asymptotes, then sketch 2 smooth
curves.
The domain is: $x \neq-1, x \neq 2$
4. a) The graph of $y=f(x)$ is given. On the same grid, sketch the graph of $y=\sqrt{f(x)}$.

Mark points where $y=0$ or $y=1$.
$y=\sqrt{f(x)}$ is not defined for $x<-2$ or $x>6$.
Choose, then mark another point for $-2 \leq x \leq 6$.

x	$y=f(x)$	$y=\sqrt{f(x)}$
2	4	2

Join the points with a smooth curve.
b) Identify the domain and range of each function in part a, then explain why the domains are different and the ranges are different.

For $y=f(x)$, domain is: $x \in \mathbb{R}$; range is: $y \leq 4$
For $y=\sqrt{f(x)}$, domain is: $-2 \leq x \leq 6$; range is: $0 \leq y \leq 2$
The domains are different because $y=f(x)$ is defined for all real values of x while $y=\sqrt{f(x)}$ is only defined for values of x for which $f(x) \geq 0$. The ranges are different because $f(x)$ can have any value less than or equal to 4 , while $\sqrt{f(x)}$ can only be 0 or positive.
5. Use graphing technology to solve each equation. Give the solution to the nearest tenth.
a) $x-5=\sqrt{2 x+1}$
b) $\frac{x-2}{2 x+1}+2=\frac{x+1}{x+3}$

Graph a related function: $f(x)=x-5-\sqrt{2 x+1}$ Use graphing technology to determine the zero: $x \doteq 9.5$

Graph a related function:
$f(x)=\frac{x-2}{2 x+1}+2-\frac{x+1}{x+3}$
Use graphing technology to determine the zeros: $x \doteq-4.1$ or $x \doteq 0.1$
6. Without using graphing technology, match each function to its graph. Justify your choice.

i) Graph A

iii) Graph C

a) $y=\frac{x+1}{x^{2}-4}$

The function is undefined when $x^{2}-4=0$; that is, when $x= \pm 2$. There are no common factors so the graph has vertical asymptotes at $x= \pm 2$.
The function matches Graph A.
c) $y=\frac{x^{2}-3 x-4}{x+1}$

Factor: $y=\frac{(x-4)(x+1)}{x+1}$
$(x+1)$ is a common factor, so there is a hole at $x=-1$. The function matches Graph B.
ii) Graph B

iv) Graph D

b) $y=\frac{x^{2}-3 x-4}{x-1}$

Factor: $y=\frac{(x-4)(x+1)}{x-1}$
There are no common factors, so there is a vertical asymptote at $x=1$. Since the degree of the numerator is 1 more than the degree of the denominator, there is an oblique asymptote. The function matches Graph D.
d) $y=\frac{x^{3}-4}{x+1}$

The function is undefined when $x=-1$. There are no common factors, so there is a vertical asymptote at $x=-1$. The function matches Graph C.

