1. Multiple Choice The graph of $y + 2 = -3f(\frac{1}{2}(x + 5))$ is the image

of the graph of y = f(x) after several transformations. Which statement about how the graph of y = f(x) was transformed is false?

- **A.** The graph was reflected in the *x*-axis.
- **B.** The graph was horizontally stretched by a factor of 2.
- C. The graph was translated 2 units down.
- **D**. The graph was reflected in the *y*-axis.
- **2. Multiple Choice** Which statement about a function and its inverse is not always true?
 - A. The inverse of a function is a function.
 - **B.** The domain of a function is the range of its inverse, and the range of a function is the domain of its inverse.
 - **C.** The graph of the inverse of a function can be sketched by reflecting the graph of the function in the line y = x.
 - **D.** Each point (x, y) on the graph of a function corresponds to the point (y, x) on the graph of its inverse.
- **3.** Write an equation of the function $y = \sqrt{x 3}$ after each transformation below.
 - a) a translation of 2 units right and 5 units down

The equation of the image graph has the form $y - k = \sqrt{(x - h) - 3}$, where k = -5 and h = 2. So, an equation of the image graph is: $y + 5 = \sqrt{x - 5}$

b) a reflection in the *x*-axis

The *y*-coordinates of points on the graph of $y = \sqrt{x - 3}$ change sign. So, an equation of the image graph is: $y = -\sqrt{x - 3}$

c) a reflection in the *y*-axis

The *x*-coordinates of points on the graph of $y = \sqrt{x-3}$ change sign. So, an equation of the image graph is: $y = \sqrt{-x-3}$ **d**) a vertical stretch by a factor of 2 and a horizontal compression by a factor of $\frac{1}{3}$

The equation of the image graph has the form $y = a\sqrt{bx - 3}$, where a = 2 and b = 3.

So, an equation of the image graph is: $y = 2\sqrt{3x - 3}$

4. Here is the graph of y = f(x). On the same grid, use transformations to sketch the graph of y - 5 = -3f(2x). Describe the transformations.

Compare: y - k = af(b(x - h)) to y - 5 = -3f(2x) k = 5, a = -3, b = 2, and h = 0A point (x, y) on y = f(x) corresponds to the point $\left(\frac{x}{b} + h, ay + k\right)$ on

y - k = af(b(x - h)).

Substitute the values above. A point on y - 5 = -3f(2x) has coordinates $\left(\frac{x}{2}, -3y + 5\right)$. Transform some points on the lines.

Point on $y = f(x)$	Point on $y - 5 = -3f(2x)$
(-4, 4)	(-2, -7)
(0, 0)	(0, 5)
(4, 4)	(2, -7)

Draw 2 lines through the points for the graph of y - 5 = -3f(2x). The graph of y = f(x) was compressed horizontally by a factor of $\frac{1}{2}$, stretched vertically by a factor of 3, reflected in the *x*-axis, then translated 5 units up.

- **5.** Here is the graph of $y = \sqrt{x}$.
 - **a**) Use this graph to sketch a graph of $y 1 = -2\sqrt{\frac{1}{2}(x 4)}$.

Compare: y - k = af(b(x - h)) to

Г.

$$y - 1 = -2\sqrt{\frac{1}{2}(x - 4)}$$

$$k = 1, a = -2, b = \frac{1}{2}, \text{ and } h = 4$$

A point (x, y) on $y = f(x)$ corresponds to the point $\left(\frac{x}{b} + h, ay + k\right)$

on
$$y - k = af(b(x - h))$$
.

Substitute the values above.

A point on $y - 1 = -2\sqrt{\frac{1}{2}(x - 4)}$ has coordinates: (2x + 4, -2y + 1)Transform some points on $y = \sqrt{x}$.

Point on	Point on
$y = \sqrt{x}$	$y - 1 = -2\sqrt{\frac{1}{2}(x - 4)}$
(0, 0)	(4, 1)
(1, 1)	(6, -1)
(4, 2)	(12, -3)

Join the points with a smooth curve for the graph of $y - 1 = -2\sqrt{\frac{1}{2}(x - 4)}$.

b) Write the domain and range of the function in part a.

From the graph, the domain is $x \ge 4$; and the range is $y \le 1$.

6. a) Determine an equation of the inverse of $y = (x - 4)^2 + 5$.

Interchange x and y in the equation. $x = (y - 4)^2 + 5$ Solve for y. $(y - 4)^2 = x - 5$ $y - 4 = \pm \sqrt{x - 5}$ $y = \pm \sqrt{x - 5} + 4$

b) Sketch the graph of the inverse. Is the inverse a function? Explain.

Graph $y = (x - 4)^2 + 5$. This is the graph of $y = x^2$ after a translation of 4 units right and 5 units up. Interchange the coordinates of points on this graph, then plot the new points to get the graph of $y = \pm \sqrt{x - 5} + 4$. No, the inverse is not a function because its graph does not pass the vertical line test.

c) If your answer to part b is yes, explain how you know. If your answer to part b is no, determine a possible restriction on the domain of $y = (x - 4)^2 + 5$ so its inverse is a function, then write the equation of the inverse function.

The domain can be restricted by considering each part of the graph of $y = (x - 4)^2 + 5$ to the right and left of the vertex. So, one restriction is $x \ge 4$ and the equation of the inverse function is: $y = \sqrt{x - 5} + 4$ Another restriction is $x \le 4$ and the equation of the inverse function is: $y = -\sqrt{x - 5} + 4$