PRACTICE TEST, pages 261-264

1. Multiple Choice The graph of $y+2=-3 f\left(\frac{1}{2}(x+5)\right)$ is the image of the graph of $y=f(x)$ after several transformations. Which statement about how the graph of $y=f(x)$ was transformed is false?
A. The graph was reflected in the x-axis.
B. The graph was horizontally stretched by a factor of 2 .
C. The graph was translated 2 units down.
(D.) The graph was reflected in the y-axis.
2. Multiple Choice Which statement about a function and its inverse is not always true?
A. The inverse of a function is a function.
B. The domain of a function is the range of its inverse, and the range of a function is the domain of its inverse.
C. The graph of the inverse of a function can be sketched by reflecting the graph of the function in the line $y=x$.
D. Each point (x, y) on the graph of a function corresponds to the point (y, x) on the graph of its inverse.
3. Write an equation of the function $y=\sqrt{x-3}$ after each transformation below.
a) a translation of 2 units right and 5 units down

The equation of the image graph has the form $y-k=\sqrt{(x-h)-3}$, where $k=-5$ and $h=2$.
So, an equation of the image graph is: $y+5=\sqrt{x-5}$
b) a reflection in the x-axis

The y-coordinates of points on the graph of $y=\sqrt{x-3}$ change sign.
So, an equation of the image graph is: $y=-\sqrt{x-3}$
c) a reflection in the y-axis

The x-coordinates of points on the graph of $y=\sqrt{x-3}$ change sign. So, an equation of the image graph is: $y=\sqrt{-x-3}$
d) a vertical stretch by a factor of 2 and a horizontal compression by a factor of $\frac{1}{3}$

The equation of the image graph has the form $y=a \sqrt{b x-3}$, where $a=2$ and $b=3$.
So, an equation of the image graph is: $y=2 \sqrt{3 x-3}$
4. Here is the graph of $y=f(x)$.

On the same grid, use transformations to sketch the graph of $y-5=-3 f(2 x)$.
Describe the transformations.
Compare: $y-k=a f(b(x-h))$ to $y-5=-3 f(2 x)$
$k=5, a=-3, b=2$, and $h=0$
A point (x, y) on $y=f(x)$ corresponds

to the point $\left(\frac{x}{b}+h, a y+k\right)$ on
$y-k=a f(b(x-h))$.
Substitute the values above.
A point on $y-5=-3 f(2 x)$ has coordinates $\left(\frac{x}{2},-3 y+5\right)$.
Transform some points on the lines.

Point on $y=f(x)$	Point on $y-5=-3 f(2 x)$
$(-4,4)$	$(-2,-7)$
$(0,0)$	$(0,5)$
$(4,4)$	$(2,-7)$

Draw 2 lines through the points for the graph of $y-5=-3 f(2 x)$.
The graph of $y=f(x)$ was compressed horizontally by a factor of $\frac{1}{2}$, stretched vertically by a factor of 3 , reflected in the x-axis, then translated 5 units up.
5. Here is the graph of $y=\sqrt{x}$.
a) Use this graph to sketch a graph of $y-1=-2 \sqrt{\frac{1}{2}(x-4)}$.

Compare: $y-k=a f(b(x-h))$ to
$y-1=-2 \sqrt{\frac{1}{2}(x-4)}$
$k=1, a=-2, b=\frac{1}{2}$, and $h=4$
A point (x, y) on $y=f(x)$ corresponds to the point $\left(\frac{x}{b}+h, a y+k\right)$
on $y-k=a f(b(x-h))$.
Substitute the values above.
A point on $y-1=-2 \sqrt{\frac{1}{2}}(x-4)$ has coordinates: $(2 x+4,-2 y+1)$
Transform some points on $y=\sqrt{x}$.

| Point on |
| :--- | :--- |
| $y=\sqrt{x}$ | \left\lvert\, | Point on |
| :--- |
| $y-1=-2 \sqrt{\frac{1}{2}(x-4)}$ |
| $(0,0)$ |$(4,1)\right.$.

Join the points with a smooth curve for the graph of $y-1=-2 \sqrt{\frac{1}{2}(x-4)}$.
b) Write the domain and range of the function in part a.

From the graph, the domain is $x \geq 4$; and the range is $y \leq 1$.
6. a) Determine an equation of the inverse of $y=(x-4)^{2}+5$.

Interchange x and y in the equation.

$$
\begin{aligned}
x & =(y-4)^{2}+5 \quad \text { Solve for } y . \\
(y-4)^{2} & =x-5 \\
y-4 & = \pm \sqrt{x-5} \\
y & = \pm \sqrt{x-5}+4
\end{aligned}
$$

b) Sketch the graph of the inverse. Is the inverse a function? Explain.

Graph $y=(x-4)^{2}+5$.
This is the graph of $y=x^{2}$ after a translation of 4 units right and 5 units up.
Interchange the coordinates of points on this graph, then plot the new points to get the graph of $y= \pm \sqrt{x-5}+4$.
No, the inverse is not a function because its graph does not pass the vertical line test.
c) If your answer to part b is yes, explain how you know. If your answer to part b is no, determine a possible restriction on the domain of $y=(x-4)^{2}+5$ so its inverse is a function, then write the equation of the inverse function.

The domain can be restricted by considering each part of the graph of $y=(x-4)^{2}+5$ to the right and left of the vertex.
So, one restriction is $x \geq 4$ and the equation of the inverse function is: $y=\sqrt{x-5}+4$
Another restriction is $x \leq 4$ and the equation of the inverse function is: $y=-\sqrt{x-5}+4$

