PRACTICE TEST, pages 567-570

1. Multiple Choice Given $\cos \theta=0.4$, which is the value of $\cos (\theta+\pi)$?
A. 0.6
B. -0.6
C. 0.4
D. -0.4
2. Multiple Choice A sinusoidal function $f(x)$ has period 5 and passes through the point $\mathrm{P}(5,0)$. Which of the following values can be determined from this information?
I. $f(0)$
II. $f(5)$
III. $f(15)$
A. I only
B. II only
C. III only
D. I, II, and III
3. A pulley with radius 5 cm has its axle 300 cm above the ground. A load is on the ground. Through which positive angle will the pulley have to rotate to lift the load 100 cm ? Give the answer in radians and to the nearest degree.

The arc length is 100 cm .

$$
\text { Angle measure in radians is: } \frac{\text { arc length }}{\text { radius }}=\frac{100}{5}
$$

The diagram is not drawn to scale.

An angle of 20 radians $=20\left(\frac{180^{\circ}}{\pi}\right)$

$$
=1145.9155 \ldots{ }^{\circ}
$$

The angle measures are 20 radians and approximately 1146°.
4. Determine the value of each trigonometric ratio. Use exact values where possible; otherwise write the values to the nearest hundredth.
a) $\sin 505^{\circ}$
$=\sin 145^{\circ}$
$\doteq 0.57$
b) $\cos \left(-\frac{7 \pi}{6}\right)$
c) $\csc \left(-570^{\circ}\right)$
$=\cos \left(\frac{5 \pi}{6}\right)$

$$
\begin{aligned}
& =\csc 150^{\circ} \\
& =\frac{1}{\sin 30^{\circ}} \\
& =2
\end{aligned}
$$

d) $\tan \frac{9 \pi}{4}$
e) $\sec 51^{\circ}$
f) $\cot \left(-\frac{11 \pi}{12}\right)$
$=\tan \frac{\pi}{4}$
$=\frac{1}{\cos 51^{\circ}}$
$=\cot \frac{\pi}{12}$
$\doteq 1.59$

$$
\begin{aligned}
& =\frac{1}{\tan \frac{\pi}{12}} \\
& =3.73
\end{aligned}
$$

5. Given $\sin \theta=-\frac{3}{7}$ and $\tan \theta>0$
a) Determine the values of the other 5 trigonometric ratios for θ.

The terminal arm of the angle lies in Quadrant 3, where x is negative.

$$
\begin{aligned}
& \text { Use: } x^{2}+y^{2}=r^{2} \quad \text { Substitute: } y=-3, r=7 \\
& x^{2}+9=49 \\
& x=-\sqrt{40} \\
& \csc \theta=\frac{r}{y} \quad \cos \theta=\frac{x}{r} \quad \sec \theta=\frac{r}{x} \quad \tan \theta=\frac{y}{x} \quad \cot \theta=\frac{x}{y} \\
& =-\frac{7}{3} \quad=-\frac{\sqrt{40}}{7} \quad=-\frac{7}{\sqrt{40}} \quad=\frac{3}{\sqrt{40}} \quad=\frac{\sqrt{40}}{3}
\end{aligned}
$$

b) For $0 \leq \theta<2 \pi$, determine the measure of θ in radians and in degrees, to the nearest tenth.
The reference angle is $\sin ^{-1}\left(\frac{3}{7}\right)$.
In degrees, the reference angle is In radians, the reference angle is 25.3769... ${ }^{\circ}$

So, $\theta=180^{\circ}+25.3769 \ldots{ }^{\circ}$

$$
\doteq 205.4^{\circ}
$$

0.4429...

So, $\theta=\pi+0.4429 \ldots$

$$
\doteq 3.6
$$

6. Given the function: $y=\frac{1}{2} \cos \left(2 x+\frac{\pi}{2}\right)+1$
a) Determine these characteristics of the function:
amplitude; period; phase shift
Write the function as: $y=\frac{1}{2} \cos 2\left(x+\frac{\pi}{4}\right)+1$
The amplitude is $\frac{1}{2}$. The period is $\frac{2 \pi}{2}=\pi$. The phase shift is $-\frac{\pi}{4}$.
b) Graph the function for $-2 \pi \leq x \leq 2 \pi$.

Sample response: Graph $y=\frac{1}{2} \cos 2 x$, then translate several points on the graph $\frac{\pi}{4}$ units left and 1 unit up. Join these points for the graph of
$y=\frac{1}{2} \cos \left(2 x+\frac{\pi}{2}\right)+1$.
c) Determine these characteristics of the graph of $y=\frac{1}{2} \cos \left(2 x+\frac{\pi}{2}\right)+1$: domain; range; zeros

The domain is: $-2 \pi \leq x \leq 2 \pi$; the range is: $0.5 \leq y \leq 1.5$; there are no zeros.
7. The table shows the mean monthly temperatures for Winnipeg, MB, from May, 2010 to April, 2011.

Month	Mean monthly temperature $\left({ }^{\circ} \mathrm{C}\right)$
May	12.7
June	16.9
July	20.4
Aug.	19.1
Sept.	11.6
Oct.	8.2
Nov.	-3.1
Dec.	-13.8
Jan.	-18.4
Feb.	-13.8
Mar.	-8.0
Apr.	4.6

a) Graph the data, then write an equation of a sinusoidal function that models the data.

Sample response: Let T represent the mean monthly temperatures in degrees Celsius, and m represent the months numbered 0 to 11.
Use a cosine function to model the data: $T(m)=a \cos b(m-c)+d$
From the graph:

- the first maximum point has approximate coordinates $(2,20.4)$ and the first minimum point has approximate coordinates ($8,-18.4$), so the equation of the centre line is approximately:
$T=\frac{20.4-18.4}{2}$, or $T=1$; so $d \doteq 1$
- the amplitude is approximately: $20.4-1=19.4$; so $a \doteq 19.4$
- the period is approximately 12 months; so $b \doteq \frac{2 \pi}{12}$, or $\frac{\pi}{6}$
- the phase shift is the m-coordinate of the first maximum point; so $C \doteq 2$
A function that approximates the data is: $T(m)=19.4 \cos \frac{\pi}{6}(m-2)+1$
b) Use graphing technology to estimate the mean monthly temperature for April 2010 and for May 2011.

Graph: $y=19.4 \cos \frac{\pi}{6}(x-2)+1$.
For April 2010, $x=-1$; from the graph, when $x=-1, y=1$
So, the mean monthly temperature for April 2010 was approximately $1^{\circ} \mathrm{C}$.
For May 2011, $x=12$; from the graph, when $x=12, y=10.7$
So, the mean monthly temperature for May 2011 was approximately $10.7^{\circ} \mathrm{C}$.

