REVIEW, pages 560-566

6.1

1. Determine the value of each trigonometric ratio. Use exact values where possible; otherwise write the value to the nearest thousandth.

b)
$$\cos 600^{\circ}$$

= $\cos 240^{\circ}$
= $-\frac{1}{2}$

c)
$$\sec (-210^{\circ})$$

$$\cos (-210)$$

$$= \frac{1}{\cos 150^{\circ}}$$

$$= -\frac{2}{\sqrt{3}}$$

d)
$$\sin 765^{\circ}$$

$$= \sin 45^{\circ}$$

$$= \frac{1}{\sqrt{2}}$$

e)
$$\cot 21^{\circ}$$

$$= \frac{1}{\tan 21^{\circ}}$$

$$= 2.605$$

f)
$$csc 318^{\circ}$$

= $\frac{1}{sin 318^{\circ}}$
= -1.494

2. To the nearest degree, determine all possible values of θ for which $\cos \theta = 0.76$, when $-360^{\circ} \le \theta \le 360^{\circ}$.

Since $\cos \theta$ is positive, the terminal arm of angle θ lies in Quadrant 1 or 4. The reference angle is: $\cos^{-1}(0.76) \doteq 41^{\circ}$

For the domain $0^{\circ} \le \theta \le 360^{\circ}$:

In Quadrant 1, $\theta \doteq 41^{\circ}$

In Quadrant 4, $\theta = 360^{\circ} - 41^{\circ}$, or approximately 319°

For the domain $-360^{\circ} \le \theta \le 0^{\circ}$:

In Quadrant 1, $\theta = -360^{\circ} + 41^{\circ}$, or approximately -319°

In Quadrant 4, $\theta = -41^{\circ}$

6.2

3. As a fraction of π , determine the length of the arc that subtends a central angle of 225° in a circle with radius 3 units.

Arc length:
$$\frac{225}{360}(2\pi)(3) = \frac{15}{4}\pi$$

6.3

4. a) Convert each angle to degrees. Give the answer to the nearest degree where necessary.

$$\mathbf{i)}\ \frac{5\pi}{3}$$

$$= \frac{5(180^{\circ})}{3} = 300^{\circ}$$

ii)
$$-\frac{10\pi}{7}$$

$$= -\frac{10(180^{\circ})}{7} = 4\left(\frac{180^{\circ}}{\pi}\right)$$

$$= -257^{\circ} = 220^{\circ}$$

b) Convert each angle to radians.

ii)
$$-240^{\circ}$$

$$= 150 \left(\frac{\pi}{180}\right) \qquad = -240 \left(\frac{\pi}{180}\right) \qquad = 485 \left(\frac{\pi}{180}\right)$$

$$= \frac{5\pi}{6} \qquad = -\frac{4\pi}{3} \qquad = \frac{97\pi}{36}$$

$$=-240\bigg(\!\frac{\pi}{180}\!\bigg)$$

$$=485\left(\frac{\pi}{180}\right)$$

$$=\frac{5\pi}{6}$$

$$=-\frac{4\pi}{3}$$

$$=\frac{97\pi}{36}$$

5. In a circle with radius 5 cm, an arc of length 6 cm subtends a central angle. What is the measure of this angle in radians, and to the nearest degree?

Angle measure is:
$$\frac{\text{arc length}}{\text{radius}} = \frac{6}{5}$$

$$: \frac{\text{arc length}}{\text{radius}} = \frac{6}{5}$$

In degrees,
$$1.2 = 1.2 \left(\frac{180^{\circ}}{\pi} \right)$$

- The angle measure is 1.2 radians or approximately 69°.
- **6.** A race car is travelling around a circular track at an average speed of 120 km/h. The track has a diameter of 1 km. Visualize a line segment joining the race car to the centre of the track. Through what angle, in radians, will the segment have rotated in 10 s?

In 1 s, the car travels:
$$\frac{120}{60 \cdot 60}$$
 km = $\frac{1}{30}$ km

So, in 10 s, the car travels:
$$\frac{10}{30}$$
 km = $\frac{1}{3}$ km

Angle measure is:
$$\frac{\text{arc length}}{\text{radius}} = \frac{\frac{1}{3}}{1}$$

- In 10 s, the segment will have rotated through an angle of $\frac{1}{3}$ radian.
- **7.** Determine the value of each trigonometric ratio. Use exact values where possible; otherwise write the value to the nearest thousandth.

a)
$$\sin \frac{\pi}{3}$$

$$=\frac{\sqrt{3}}{2}$$

b)
$$\cos \frac{5\pi}{6}$$

$$=-\frac{\sqrt{3}}{2}$$

c)
$$\sec\left(-\frac{\pi}{2}\right)$$

$$=\frac{1}{\cos\left(-\frac{\pi}{2}\right)},$$

which is undefined

d)
$$\tan \frac{15\pi}{4}$$

$$= \tan \frac{3\pi}{4}$$
$$= -1$$

$$= \frac{1}{\sin 5}$$
$$= -1.043$$

$$= \frac{1}{\tan{(-22.8)}}$$

- **8.** P(3, -1) is a terminal point of angle θ in standard position.
 - a) Determine the exact values of all the trigonometric ratios for θ .

Let the distance between the origin and P be r.

Use:
$$x^2 + y^2 = r^2$$
 Substitute: $x = 3$, $y = -1$
 $9 + 1 = r^2$
 $r = \sqrt{10}$
 $\sin \theta = -\frac{1}{\sqrt{10}}$ $\csc \theta = -\sqrt{10}$ $\cos \theta = \frac{3}{\sqrt{10}}$
 $\sec \theta = \frac{\sqrt{10}}{3}$ $\tan \theta = -\frac{1}{3}$ $\cot \theta = -3$

b) To the nearest tenth of a radian, determine possible values of θ in the domain $-2\pi \le \theta \le 2\pi$.

The terminal arm of angle θ lies in Quadrant 4.

The reference angle is:
$$tan^{-1}\left(\frac{1}{3}\right) = 0.3217...$$

So,
$$\theta = -0.3217...$$

The angle between 0 and 2π that is coterminal with -0.3217... is: $2\pi - 0.3217... = 5.9614...$

Possible values of θ are approximately: 6.0 and -0.3

6.4

9. Use graphing technology to graph each function below for $-2\pi \le x \le 2\pi$, then list these characteristics of the graph: amplitude, period, zeros, domain, range, and the equations of the asymptotes.

$$\mathbf{a}) \ y = \sin x$$

The amplitude is 1. The period is 2π . The zeros are $0, \pm \pi, \pm 2\pi$. The domain is $-2\pi \le x \le 2\pi$. The range is $-1 \le y \le 1$. There are no asymptotes.

$$\mathbf{b}) y = \cos x$$

The amplitude is 1. The period is 2π . The zeros are $\pm \frac{\pi}{2}$, $\pm \frac{3\pi}{2}$.

The domain is $-2\pi \le x \le 2\pi$. The range is $-1 \le y \le 1$. There are no asymptotes.

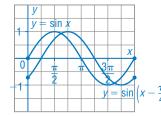
c)
$$y = \tan x$$

There is no amplitude. The period is π . The zeros are $0, \pm \pi, \pm 2\pi$. The domain is $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}$. The range is $y \in \mathbb{R}$. The equations of the asymptotes are $x = \pm \frac{\pi}{2}$ and $x = \pm \frac{3\pi}{2}$.

6.5

10. On the same grid, sketch graphs of the functions in each pair for $0 \le x \le 2\pi$, then describe your strategy.

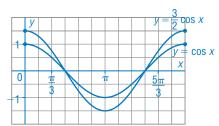
a)
$$y = \sin x$$
 and $y = \sin \left(x - \frac{\pi}{4}\right)$



For the graph of $y = \sin x$, I used the completed table of values from Lesson 6.4.

The horizontal scale is 1 square to $\frac{\pi}{4}$ units, because the phase shift is $\frac{\pi}{4}$. I then shifted several points $\frac{\pi}{4}$ units right and joined the points to get the graph of $y=\sin\left(x-\frac{\pi}{4}\right)$.

b)
$$y = \cos x$$
 and $y = \frac{3}{2} \cos x$



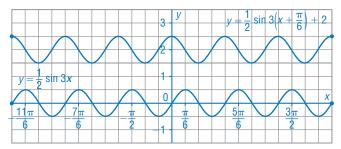
For the graph of $y = \cos x$, I used the completed table of values from Lesson 6.4.

I multiplied every *y*-coordinate by 1.5, plotted the new points, then joined them to get the graph of $y = \frac{3}{2} \cos x$.

6.6

11. a) Graph $y = \frac{1}{2} \sin 3\left(x + \frac{\pi}{6}\right) + 2 \text{ for } -2\pi \le x \le 2\pi$.

Explain your strategy.

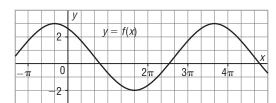


Sample response: I graphed $y=\frac{1}{2}\sin 3x$, shifted several points $\frac{\pi}{6}$ units left and 2 units up, then joined the points to get the graph of $y=\frac{1}{2}\sin 3\left(x+\frac{\pi}{6}\right)+2$.

b) List the characteristics of the graph you drew.

The amplitude is $\frac{1}{2}$. The period is $\frac{2\pi}{3}$. There are no zeros. The domain is $-2\pi \le x \le 2\pi$. The range is $\frac{3}{2} \le y \le \frac{5}{2}$.

12. An equation of the function graphed below has the form $y = a \cos b(x - c) + d$. Identify the values of a, b, c, and d in the equation, then write an equation for the function.



Sample response: The equation of the centre line is $y = \frac{1}{2}$, so the vertical translation is $\frac{1}{2}$ unit up and $d = \frac{1}{2}$.

The amplitude is: $\frac{3-(-2)}{2}=\frac{5}{2}$, so $a=\frac{5}{2}$

Choose the x-coordinates of two adjacent maximum points,

$$-\frac{\pi}{3}$$
 and $\frac{11\pi}{3}$. The period is: $\frac{11\pi}{3} - \left(-\frac{\pi}{3}\right) = 4\pi$

So, *b* is: $\frac{2\pi}{4\pi} = \frac{1}{2}$

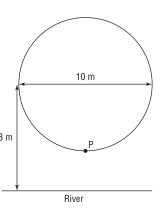
To the left of the *y*-axis, the cosine function begins its cycle at $x = -\frac{\pi}{3}$, so a possible phase shift is $-\frac{\pi}{3}$, and $c = -\frac{\pi}{3}$.

Substitute for a, b, c, and d in: $y = a \cos b(x - c) + d$

An equation is: $y = \frac{5}{2} \cos \frac{1}{2} \left(x + \frac{\pi}{3} \right) + \frac{1}{2}$

6.7

- **13.** A water wheel has diameter 10 m and completes 4 revolutions each minute. The axle of the wheel is 8 m above a river.
 - a) The wheel is at rest at time t = 0 s, with point P at the lowest point on the wheel. Determine a function that models the height of P above the river, h metres, at any time t seconds.
 Explain how the characteristics of the graph relate to the given information.



(7.5, 13)

(0, 3)

(15, 3)

The time for 1 revolution is 15 s. At t = 0, h = 3At t = 7.5, h = 13The graph begins at (0, 3), which is a minimum point.

The first maximum point is at (7.5, 13). The next minimum point is after 1 cycle and it has coordinates (15, 3).

The position of the first maximum is known, so use a cosine function:

$$h(t) = a\cos b(t-c) + d$$

The constant in the equation of the centre line of the graph is the height of the axle above the river, so its equation is: h=8; and this is also the vertical translation, so d=8

The amplitude is one-half the diameter of the wheel, so a = 5

The period is the time for 1 revolution, so
$$b = \frac{2\pi}{15}$$

A possible phase shift is: $c = 7.5$
An equation is: $h(t) = 5 \cos \frac{2\pi}{15}(t - 7.5) + 8$

- **b**) Use technology to graph the function. Use this graph to determine:
 - i) the height of P after 35 s

Graph:
$$Y = 5 \cos \frac{2\pi}{15}(X - 7.5) + 8$$

Determine the Y-value when $X = 35$.
After 35 s, P is 10.5 m high.

ii) the times, to the nearest tenth of a second, in the first 15 s of motion that P is 11 m above the river

Graph:
$$Y = 5 \cos \frac{2\pi}{15}(X - 7.5) + 8$$
 and $Y = 11$

Determine the Y-coordinates of the first two points of intersection. P is 11 m above the river after approximately 5.3 s and 9.7 s.