Lesson 7.2 Exercises, pages 592-599

Α

Use algebra to solve each equation. Give exact values when possible; otherwise write the roots to the nearest degree or the nearest hundredth of a radian. Verify the solutions.

4. Solve each equation over the domain $0 \le x < 2\pi$.

$$\mathbf{a)}\,\sin x = \frac{\sqrt{3}}{2}$$

b)
$$\tan x = \frac{1}{\sqrt{3}}$$

The reference angle is:

$$\sin^{-1}\!\!\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$$

In Quadrant 1,
$$x = \frac{\pi}{3}$$

In Quadrant 1,
$$x = \frac{\pi}{3}$$
 In Quadrant 1, $x = \frac{\pi}{6}$
In Quadrant 2, $x = \pi - \frac{\pi}{3}$, In Quadrant 3, $x = \pi + \frac{\pi}{6}$, or $\frac{7\pi}{6}$ or $\frac{2\pi}{3}$

The reference angle is:

$$\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$$

In Quadrant 1,
$$x = \frac{\pi}{6}$$

In Quadrant 3,
$$x = \pi + \frac{\pi}{6}$$
, or $\frac{7\pi}{6}$

5. Verify that each given value of *x* is a root of the equation.

a)
$$\tan^2 x - 3 = 0$$
;
 $x = \frac{\pi}{3}$

Substitute $x = \frac{\pi}{3}$ in each side of the equation.

L.S. =
$$\tan^2\left(\frac{\pi}{3}\right) - 3$$

= $(\sqrt{3})^2 - 3$
= 0
= R.S.

Since the left side is equal to the right side, the root is verified.

b)
$$8 \sin^2 x + 6 \sin x + 1 = 0$$
; $x = \frac{7\pi}{6}$

Substitute $x = \frac{7\pi}{6}$ in each side of the equation.

L.S. =
$$8 \sin^2 \left(\frac{7\pi}{6} \right) + 6 \sin \frac{7\pi}{6} + 1$$

= $8 \left(-\frac{1}{2} \right)^2 + 6 \left(-\frac{1}{2} \right) + 1$
= $2 - 3 + 1$
= 0
= R.S.

Since the left side is equal to the right side, the root is verified.

В

6. Solve each equation over the domain $0 \le x < 2\pi$, then state the general solution.

a)
$$3\cos x - 2 = 0$$

$$3\cos x = 2$$

$$\cos x = \frac{2}{3}$$

In Quadrant 1,

$$x = \cos^{-1}\left(\frac{2}{3}\right)$$

x = 0.8410...

In Quadrant 4,

 $x = 2\pi - 0.8410...$

x = 5.4421...

The roots are: x = 0.84 and

 $x \doteq 5.44$

The general solution is:

 $x \doteq 0.84 + 2\pi k, k \in \mathbb{Z}$ or

 $x \doteq 5.44 + 2\pi k, k \in \mathbb{Z}$

b)
$$2 \tan x + \sqrt{5} = 0$$

$$2 \tan x = -\sqrt{5}$$

$$\tan x = -\frac{\sqrt{5}}{2}$$

The reference angle is:

$$tan^{-1}\left(\frac{\sqrt{5}}{2}\right) = 0.8410...$$

In Quadrant 2,

 $x = \pi - 0.8410...$

x = 2.3005...

In Quadrant 4,

 $x = 2\pi - 0.8410...$

x = 5.4421...

The roots are: x = 2.30 and

 $x \doteq 5.44$

The general solution is:

 $x \doteq 2.30 + \pi k, k \in \mathbb{Z}$ or

 $x \doteq 5.44 + \pi k, k \in \mathbb{Z}$

- **7.** Solve each equation for $-\pi \le x \le \pi$.

 - **a)** $3 \tan x 3 = 5 \tan x 1$ **b)** $5(1 + 2 \sin x) = 2 \sin x + 1$

$$2 \tan x = -2$$

$$\tan x = -1$$

The reference angle is:

$$\tan^{-1}(1) = \frac{\pi}{4}$$

In Quadrant 2,

$$x=\pi-\frac{\pi}{4}$$

$$x=\frac{3\tau}{4}$$

In Quadrant 4,

$$x = -\frac{\pi}{4}$$

The roots are: $x = \frac{3\pi}{4}$ and

$$x=-\frac{\pi}{4}$$

 $5 + 10 \sin x = 2 \sin x + 1$

$$8\sin x = -4$$

$$\sin x = -\frac{1}{2}$$

The reference angle is:

$$\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

In Quadrant 3,

$$x=-\pi+\frac{\pi}{6}$$

$$x = -\frac{5\pi}{6}$$

In Quadrant 4,

$$x = -\frac{\pi}{6}$$

The roots are: $x = -\frac{\pi}{6}$ and

$$x=-\frac{5\pi}{6}$$

8. a) Solve each equation for $-180^{\circ} \le x \le 90^{\circ}$.

i)
$$2 \csc x = 6$$

$$\csc x = 3$$

$$\sin x = \frac{1}{3}$$

The reference angle is:

$$\sin^{-1}\left(\frac{1}{3}\right) = 19.4712...^{\circ}$$

In Quadrant 1, $x = 19.4712...^{\circ}$

Quadrant 2 is not in the domain.

The root is: $x = 19^{\circ}$

ii) $-6 = 3 \cot x$

$$-2 = \cot x$$
$$\tan x = -\frac{1}{2}$$

The reference angle is:

$$\tan^{-1}\left(\frac{1}{2}\right) = 26.5650...^{\circ}$$

Quadrant 2 is not in the domain.

In Quadrant 4, $x = -26.5650...^{\circ}$

The root is: $x = -27^{\circ}$

b) Solve each equation for $-90^{\circ} \le x \le 180^{\circ}$.

i)
$$4 \sec x = -5$$

$$\mathbf{ii}) \ -\frac{1}{2} = \frac{1}{3} \csc x$$

$$\sec x = \frac{-5}{4}$$

$$\cos x = -\frac{4}{5}$$

The reference angle is:

$$\cos^{-1}\left(\frac{4}{5}\right) = 36.8698...^{\circ}$$

In Quadrant 2,

$$x = 180^{\circ} - 36.8698...^{\circ}$$

$$x = 143.1301...^{\circ}$$

There is no solution in Quadrant 3. The root is: $x = -42^{\circ}$

The root is: $x = 143^{\circ}$

$$\csc x = -\frac{3}{2}$$

$$\sin x = -\frac{2}{3}$$

The reference angle is:

$$\sin^{-1}\left(\frac{2}{3}\right) = 41.8103...^{\circ}$$

There is no solution in Quadrant 3.

In Quadrant 4,

$$x = -41.8103...^{\circ}$$

9. For each equation, determine the general solution over the set of real numbers, then list the roots over the domain $-\pi \le x < 0$.

a)
$$\cos 3x - 1 = 5 \cos 3x + 2$$

b)
$$3 \sin 4x = 3 - 2 \sin 4x$$

$$-3 = 4 \cos 3x$$
$$\cos 3x = -\frac{3}{4}$$
$$3x = \cos^{-1}\left(-\frac{3}{4}\right)$$

$$5 \sin 4x = 3$$
$$\sin 4x = \frac{3}{5}$$
$$4x = \sin^{-1} \left(\frac{3}{5}\right)$$

The terminal arm of angle 3x lies in Quadrant 2 or 3.

The terminal arm of angle 4x lies in Quadrant 1 or 2.

The reference angle for angle 3x is:

The reference angle for angle 4x is:

$$\cos^{-1}\!\left(\frac{3}{4}\right) = 0.7227.\dots$$

$$\sin^{-1}\left(\frac{3}{5}\right) = 0.6435\dots$$
In Quadrant 1,

In Quadrant 2.

$$3x = \pi - 0.7227...$$

x = 0.8062...In Quadrant 3,

$$3x = \pi + 0.7227...$$

$$y = 1.2881$$

x = 1.2881...The period of cos 3x is $\frac{2\pi}{3}$, so the general solution is:

general solution is:

$$x \doteq 0.81 + \frac{2\pi}{3}k, k \in \mathbb{Z}$$
, or

$$x \doteq 1.29 + \frac{2\pi}{3}k, k \in \mathbb{Z}$$

In the given domain, the roots are:

$$x = 0.8062... - \frac{2\pi}{3}$$

$$x \doteq -1.29$$
, and

$$x=1.2881...-\frac{2\pi}{3}$$

$$x \doteq -0.81$$
, and

$$x=1.2881...-\frac{4\pi}{3}$$

$$x \doteq -2.90$$

In Quadrant 1,

$$4x = 0.6435...$$

$$x = 0.1608...$$

$$4x = \pi - 0.6435...$$

$$x = 0.6245...$$

The period of sin 4x is $\frac{2\pi}{4}$, or $\frac{\pi}{2}$, so the general solution is:

$$x \doteq 0.16 + \frac{\pi}{2}k, k \in \mathbb{Z}$$
, or

$$x \doteq 0.62 + \frac{\pi}{2}k, k \in \mathbb{Z}$$

In the given domain, the roots are:

$$x = 0.1608... - \frac{\pi}{2}$$

$$x \doteq -1.41$$
, and

$$x = 0.1608... - \pi$$

$$x \doteq -2.98$$
, and

$$x = 0.6245... - \frac{\pi}{2}$$

$$x \doteq -0.95$$
, and

$$x = 0.6245... - \pi$$

$$x \doteq -2.52$$

10. Two students determined the general solution of the equation $3 \sin x + 5 = 5(\sin x + 1)$. Joseph said the solution is $x = 2\pi k$ or $x = \pi + 2\pi k$, where k is an integer. Yeoun Sun said the solution is $x = \pi k$, where k is an integer. Who is correct? Explain.

Both students are correct because both expressions produce the same roots: x = 0, $x = \pm \pi$, $x = \pm 2\pi$, $x = \pm 3\pi$, and so on

11. Solve each equation over the domain $-\pi \le x \le \frac{\pi}{2}$.

a)
$$4\cos^2 x - 3 = 0$$

$$4\cos^2 x = 3$$
$$\cos^2 x = \frac{3}{4}$$
$$\cos x = \pm \frac{\sqrt{3}}{2}$$

The reference angle is:

$$\cos^{-1}\!\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$$

In Quadrant 1, $x = \frac{\pi}{6}$

In Quadrant 2, there is no solution in the given domain. In Quadrant 3, $x = -\pi + \frac{\pi}{6}$

$$x=-\frac{5\pi}{6}$$

In Quadrant 4, $x = -\frac{\pi}{6}$

The roots are:
$$x = \pm \frac{\pi}{6}$$
 and $x = -\frac{5\pi}{6}$

b)
$$2 \tan^2 x = 3$$

$$\tan^2 x = \frac{3}{2}$$

$$\tan x = \pm \sqrt{\frac{3}{2}}$$

The reference angle is:

$$\tan^{-1}\left(\sqrt{\frac{3}{2}}\right) = 0.8860...$$

In Quadrant 1, x = 0.8860...

In Quadrant 2, there is no solution in the given domain.

In Quadrant 3, $x = -\pi + 0.8860...$ x = -2.2555...

In Quadrant 4, x = -0.8860...

The roots are: $x = \pm 0.89$ and

$$x \doteq -2.26$$

12. Use factoring to solve each equation over the domain $-90^{\circ} < x < 270^{\circ}$.

a)
$$2 \cos x \sin x - \cos x = 0$$

a)
$$2 \cos x \sin x - \cos x = 0$$
 b) $3 \tan x + \tan^2 x = 2 \tan x$

b)
$$3 \tan x + \tan^2 x = 2$$

$$(\cos x)(2\sin x - 1) = 0$$

Either $\cos x = 0$

Either
$$\cos x = 0$$

 $x = \pm 90^{\circ}$

$$0r 2 \sin x - 1 = 0$$

$$\sin x - 1 = 0$$

$$\sin x = 0.5$$

$$x = 30^{\circ}$$

or
$$x = 180^{\circ} - 30^{\circ}$$

$$x = 150^{\circ}$$

The roots are:
$$x = 30^{\circ}$$
,

The roots are:
$$x = 30^{\circ}$$
, $x = \pm 90^{\circ}$, and $x = 150^{\circ}$

$$b) 3 \tan x + \tan^2 x = 2 \tan^2 x$$

$$\tan x + \tan^2 x = 0$$

$$(\tan x)(1 + \tan x) = 0$$

Either
$$\tan x = 0$$

$$x = 0^{\circ} \text{ or } x = 180^{\circ}$$

$$0r 1 + tan x = 0$$

$$tan x = -1$$

$$x = 135^{\circ} \text{ or } x = -45^{\circ}$$

The roots are:
$$x = 0^{\circ}$$
, $x = 180^{\circ}$, $x = 135^{\circ}$, and $x = -45^{\circ}$

13. A student wrote the solution below to solve the equation $2\sin^2 x + \sin x = 1$ over the domain $0 \le x < 2\pi$. Identify any errors, then write a correct solution.

$$2\sin^2 x + \sin x = 1$$

$$(\sin x)(2\sin x + 1) = 1$$

$$x = \frac{\pi}{2}$$

$$2.9111 \times + 1 -$$

$$611 \times + 1 -$$

$$\sin x = O \qquad \frac{\sin x}{x}$$

$$x = O \text{ or } x = \pi \qquad x = \frac{\pi}{6} \text{ or } x = \frac{5\pi}{6}$$

$$(2 \sin x - 1)(\sin x + 1) = 0$$

$$\sin x = 1$$
 or $2 \sin x + 1 = 1$ Either $2 \sin x - 1 = 0$

 $2 \sin^2 x + \sin x - 1 = 0$

$$\sin x = \frac{1}{2}$$

$$x = \frac{\pi}{6}$$
 or $x = \frac{3\pi}{6}$

$$\begin{aligned}
\operatorname{Or} \sin x + 1 &= 0 \\
\sin x &= -1
\end{aligned}$$

$$x=\frac{3\pi}{2}$$

There is an error in the second line of the solution. One side of the equation must be 0 before factoring, so collect all the terms on the left side.

- **14.** Solve each equation over the domain $-2\pi \le x \le 2\pi$, then determine the general solution.
 - a) $2\cos^2 x \cos x 1 = 0$

$$(2 \cos x + 1)(\cos x - 1) = 0$$

For $2 \cos x + 1 = 0$
 $2 \cos x = -1$
 $\cos x = -\frac{1}{2}$

The terminal arm of angle *x* lies in Quadrant 2 or 3.

The reference angle is:

$$\cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

In Quadrant 2,

$$x = \pi - \frac{\pi}{3}, \text{ or } \frac{2\pi}{3}$$

and,
$$x = -\pi - \frac{\pi}{3}$$
, or $-\frac{4\pi}{3}$

In Quadrant 3,

$$x = \pi + \frac{\pi}{3}, \text{ or } \frac{4\pi}{3}$$

and,
$$x = -\pi + \frac{\pi}{3}$$
, or $-\frac{2\pi}{3}$

For
$$\cos x - 1 = 0$$

 $\cos x = 1$

 $\cos x = 1$ The terminal arm lies:

The terminal arm lies along the positive *x*-axis.

So,
$$x = \pm 2\pi$$
 or $x = 0$

The roots are:
$$x = 0$$
, $x = \pm \frac{2\pi}{3}$,

$$x = \pm \frac{4\pi}{3}$$
, and $x = \pm 2\pi$

Since consecutive roots differ by $\frac{2\pi}{3}$, the general solution is:

$$x=\frac{2\pi}{3}k, k\in\mathbb{Z}$$

b)
$$5 \sin^2 x + 3 \sin x = 2$$

$$5 \sin^2 x + 3 \sin x - 2 = 0$$

 $(5 \sin x - 2)(\sin x + 1) = 0$
For $5 \sin x - 2 = 0$
 $5 \sin x = 2$
 $\sin x = \frac{2}{5}$

The terminal arm of angle *x* lies in Quadrant 1 or 2.

The reference angle is:

$$\sin^{-1}\left(\frac{2}{5}\right) = 0.4115...$$

In Quadrant 1,

$$x = 0.4115...$$

and,
$$x = -2\pi + 0.4115...$$

$$x = -5.8716...$$

In Quadrant 2,

$$x = \pi - 0.4115...$$

$$x = 2.7300...$$

and,
$$x = -\pi - 0.4115...$$

$$x = -3.5531...$$

For
$$\sin x + 1 = 0$$

$$\sin x = -1$$

The terminal arm lies along the negative *y*-axis.

So,
$$x = \frac{3\pi}{2}$$
 or $x = -\frac{\pi}{2}$

The roots are: x = -5.87,

$$x \doteq -3.55, x = -\frac{\pi}{2}, x \doteq 0.41,$$

$$x = 2.73$$
, and $x = \frac{3\pi}{2}$

Since the period is 2π , the general solution is:

$$x \doteq 0.41 + 2\pi k, k \in \mathbb{Z}$$
 or

$$x \doteq 2.73 + 2\pi k, k \in \mathbb{Z}$$
 or

$$x=\frac{3\pi}{2}+2\pi k, k\in\mathbb{Z}$$

15. Solve each equation over the domain $0 \le x < 2\pi$.

a)
$$4 \tan^2 x = 2 - 5 \tan x$$

$$4 \tan^2 x + 5 \tan x - 2 = 0$$
Use:
$$\tan x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
Substitute: $a = 4, b = 5$,

$$c = -2$$

$$\tan x = \frac{-5 \pm \sqrt{5^2 - 4(4)(-2)}}{2(4)}$$

$$\tan x = \frac{-5 \pm \sqrt{57}}{8}$$

For
$$\tan x = \frac{-5 + \sqrt{57}}{8}$$

tan x is positive when the terminal arm of angle x lies in Quadrant 1 or 3.

The reference angle is:

$$tan^{-1}\!\!\left(\!\!\frac{-5+\sqrt{57}}{8}\right)=0.3085.\ldots$$

In Quadrant 1, x = 0.3085...

In Quadrant 3,

$$x = \pi + 0.3085...$$

$$x = 3.4501...$$

For
$$\tan x = \frac{-5 - \sqrt{57}}{8}$$

tan x is negative when the terminal arm of angle x lies in Quadrant 2 or 4.

The reference angle is:

$$\tan^{-1}\left(\frac{5+\sqrt{57}}{8}\right) = 1.0032...$$

In Quadrant 2,

$$x = \pi - 1.0032...$$

$$x = 2.1383...$$

In Quadrant 4,

$$x = 2\pi - 1.0032...$$

$$x = 5.2798...$$

The roots are: x = 0.31,

$$x \doteq 2.14, x \doteq 3.45, \text{ and}$$

$$x \doteq 5.28$$

b)
$$4 \sin x + 3 = 2 \sin^2 x$$

$$2\sin^2 x - 4\sin x - 3 = 0$$

Use:
$$\sin x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Substitute:
$$a = 2$$
, $b = -4$,

$$c = -3$$

$$\sin x = \frac{4 \pm \sqrt{(-4)^2 - 4(2)(-3)}}{2(2)}$$

$$\sin x = \frac{4 \pm \sqrt{40}}{4}$$
, or $\frac{2 \pm \sqrt{10}}{2}$

For
$$\sin x = \frac{2 + \sqrt{10}}{2}$$
; this is greater

than 1, so there is no real solution.

For
$$\sin x = \frac{2 - \sqrt{10}}{2}$$

sin x is negative when the terminal arm of angle x lies in Quadrant 3 or 4.

The reference angle is:

$$\sin^{-1}\left(\frac{\sqrt{10} - 2}{2}\right) = 0.6201...$$

In Quadrant 3,

$$x = \pi + 0.6201...$$

$$x = 3.7617...$$

In Quadrant 4,

$$x = 2\pi - 0.6201...$$

$$x = 5.6630...$$

The roots are: x = 3.76 and

$$x \doteq 5.66$$

C

16. Write a second-degree trigonometric equation that has roots

$$\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$$
 over the domain $0 \le x < 2\pi$.

Sample response: Since $\sin \frac{\pi}{6} = \sin \frac{5\pi}{6}$, these two roots can be determined from one factor, so use the sine ratio. Work backward.

Either
$$x = \frac{\pi}{6}$$

or
$$x = \frac{\tau}{2}$$

So,
$$\sin x = \frac{1}{2}$$

or
$$\sin x =$$

So,
$$\sin x = \frac{1}{2}$$
 or $\sin x = 1$
Then, $\sin x - \frac{1}{2} = 0$ or $\sin x - 1 = 0$

or
$$\sin x - 1 =$$

So, an equation is:
$$\left(\sin x - \frac{1}{2}\right)\left(\sin x - 1\right) = 0$$

This can be written as:
$$(2 \sin x - 1)(\sin x - 1) = 0$$
 or $2 \sin^2 x - 3 \sin x + 1 = 0$

17. Determine the number of roots each equation has over the domain

$$0 \le x < 2\pi$$
, where $1 < a < b$.

$$(a\cos x - b)(b\sin x + a) = 0$$

a)
$$(a\cos x - b)(b\sin x + a) = 0$$
 b) $(b\sin^2 x - 1)(a\tan x + b) = 0$

Solve the equation.

Either
$$a \cos x - b = 0$$

$$\cos x = \frac{b}{a}$$

But b > a, so $\frac{b}{a} > 1$, and there

is no real solution

Or
$$b \sin x + a = 0$$

$$\sin x = -\frac{a}{b}$$

Since b > a, there is a root in the two quadrants where the sine ratio is negative.

So, there are 2 roots.

Solve the equation.

Either
$$b \sin^2 x - 1 = 0$$

$$\sin x = \pm \sqrt{\frac{1}{b}}$$

Since
$$b > 1$$
, $0 < \sqrt{\frac{1}{h}} < 1$, and

there is a root in each quadrant.

Or
$$a \tan x + b = 0$$

$$\tan x = -\frac{b}{a}$$

There is a root in the two quadrants where the tangent

ratio is negative.

So, there is a total of 6 roots.