Lesson 7.3 Exercises, pages 611-618

Α

- **3.** Write each expression in terms of a single trigonometric function.
 - a) $\frac{\cos\theta}{\sin\theta}$

b) $\frac{\sin^2\theta}{\cos^2\theta}$

 $= \cot \theta$

 $= \tan^2 \theta$

c)
$$\sin^2\theta \sec\theta \cos\theta \csc\theta$$
 d) $\frac{\sin^2\theta}{\tan^2\theta}$
= $(\sin^2\theta) \left(\frac{1}{\cos\theta}\right) (\cos\theta) \left(\frac{1}{\sin\theta}\right) = \frac{\sin^2\theta}{\sin^2\theta}$
= $\sin\theta$ = $\cos^2\theta$

4. Determine the non-permissible values of θ .

a)
$$\sec \theta$$

 $\sec \theta = \frac{1}{\cos \theta}$, so
non-permissible values
occur when $\cos \theta = 0$,
 $\cos \theta = \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$

b)
$$\tan \theta$$
 $\tan \theta = \frac{\sin \theta}{\cos \theta}$, so non-permissible values occur when $\cos \theta = 0$, $\cos \theta = \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$

c)
$$\frac{\csc \theta}{\cos \theta}$$

 $\csc \theta = \frac{1}{\sin \theta'}$ so non-permissible values occur when $\sin \theta = 0$, so $\theta = \pi k$, $k \in \mathbb{Z}$; or when $\cos \theta = 0$, so $\theta = \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$

d)
$$\frac{\sec \theta}{\sin \theta}$$

 $\sec \theta = \frac{1}{\cos \theta}$, so non-permissible values occur when $\cos \theta = 0$, so $\theta = \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$; or when $\sin \theta = 0$, so $\theta = \pi k$, $k \in \mathbb{Z}$

- **5.** Verify each identity for the given value of θ .
 - a) $\tan \theta \csc \theta \sec \theta = \sec^2 \theta$; $\theta = 150^\circ$

Substitute: $\theta = 150^{\circ}$

L.S. =
$$\tan \theta \csc \theta \sec \theta$$
 = $(\tan 150^{\circ})(\csc 150^{\circ})(\sec 150^{\circ})$ = $(-\tan 30^{\circ})\left(\frac{1}{\sin 150^{\circ}}\right)\left(\frac{1}{\cos 150^{\circ}}\right)$ = $(-\tan 30^{\circ})\left(\frac{1}{\sin 30^{\circ}}\right)\left(\frac{-1}{\cos 30^{\circ}}\right)$ = $\left(\frac{-1}{\sqrt{3}}\right)(2)\left(\frac{-2}{\sqrt{3}}\right)$ = $\frac{4}{3}$ = $\frac{4}{3}$

The left side is equal to the right side, so $\theta = 150^{\circ}$ is verified.

b)
$$\frac{\tan \theta \csc^2 \theta}{\sec^2 \theta} = \cot \theta$$
; $\theta = \frac{4\pi}{3}$

Substitute:
$$\theta = \frac{4\pi}{3}$$

L.S.
$$= \frac{\tan \theta \csc^2 \theta}{\sec^2 \theta}$$

$$= \frac{\left(\tan \frac{4\pi}{3}\right) \left(\csc^2 \left(\frac{4\pi}{3}\right)\right)}{\sec^2 \left(\frac{4\pi}{3}\right)}$$

$$= \frac{\left(\tan \frac{\pi}{3}\right) \left(-\cos \frac{\pi}{3}\right)^2}{\left(-\sin \frac{\pi}{3}\right)^2}$$

$$= \frac{(\sqrt{3}) \left(-\frac{1}{2}\right)^2}{\left(-\frac{\sqrt{3}}{2}\right)^2}$$

$$= \frac{1}{\sqrt{3}}$$
R.S.
$$= \cot \theta$$

$$= \cot \frac{4\pi}{3}$$

$$= \frac{1}{\tan \frac{\pi}{3}}$$

$$= \frac{1}{\sqrt{3}}$$

The left side is equal to the right side, so $\theta = \frac{4\pi}{3}$ is verified.

В

6. Prove each identity in question 5.

a)
$$\tan \theta \csc \theta \sec \theta = \sec^2 \theta$$

L.S. $= \tan \theta \csc \theta \sec \theta$
 $= \left(\frac{\sin \theta}{\cos \theta}\right) \left(\frac{1}{\sin \theta}\right) \left(\frac{1}{\cos \theta}\right)$
 $= \frac{1}{\cos^2 \theta}$

 $= sec^2\theta$ = R.S.

The left side is equal to the right side, so the identity is proved.

b)
$$\frac{\tan\theta\csc^2\theta}{\sec^2\theta} = \cot\theta$$

$$L.S. = \frac{\tan \theta \csc^2 \theta}{\sec^2 \theta}$$

$$= \frac{\left(\frac{\sin \theta}{\cos \theta}\right) \left(\frac{1}{\sin \theta}\right)^2}{\left(\frac{1}{\cos \theta}\right)^2}$$

$$=\frac{\frac{1}{(\sin\theta)(\cos\theta)}}{\left(\frac{1}{\cos\theta}\right)^2}$$

$$= \frac{\cos \theta}{\sin \theta}$$

$$=\cot\theta$$

$$=$$
 R.S.

The left side is equal to the right side, so the identity is proved.

7. For each identity:

- i) Verify the identity using graphing technology.
- **ii**) Prove the identity.

a)
$$1 - \sin \theta = (\sin \theta)(\cos \theta - 1)$$
 b) $-\cot \theta = \frac{1 - \cot \theta}{1 - \tan \theta}$

b)
$$-\cot\theta = \frac{1-\cot\theta}{1-\tan\theta}$$

i) Graph:
$$y = 1 - \sin \theta$$
 and $y = \sin \theta \left(\frac{1}{\sin \theta} - 1 \right)$

The graphs coincide, so the identity is verified.

ii) R.S. =
$$(\sin \theta)(\csc \theta - 1)$$

= $(\sin \theta) \left(\frac{1}{\sin \theta} - 1\right)$
= $1 - \sin \theta$
= L.S.

The left side is equal to the right side, so the identity is proved.

i) Graph:
$$y = \frac{-1}{\tan \theta}$$
 and $y = \frac{1 - \frac{1}{\tan \theta}}{1 - \tan \theta}$

The graphs coincide, so the identity is verified.

ii) R.S.
$$= \frac{1 - \cot \theta}{1 - \tan \theta}$$
$$= \frac{1 - \frac{1}{\tan \theta}}{1 - \tan \theta}$$
$$= \frac{\tan \theta - 1}{(\tan \theta)(1 - \tan \theta)}$$
$$= \frac{-1}{\tan \theta}$$
$$= -\cot \theta$$
$$= L.S.$$

The left side is equal to the right side, so the identity is proved.

8. For each identity:

- i) Verify the identity for $\theta = 45^{\circ}$.
- **ii**) Prove the identity.

$$\mathbf{a})\,\frac{\cot\theta}{\cos\theta}-\csc\theta=0$$

$$\frac{\cot \theta}{\cos \theta} - \csc \theta = 0$$
b)
$$\tan^2 \theta \cos^2 \theta + \sin^2 \theta = \frac{2}{\csc^2 \theta}$$
i) Substitute: $\theta = 45^\circ$
i. Substitute: $\theta = 45^\circ$
L.S. = $\frac{\cot \theta}{\theta} - \csc \theta$
L.S. = $\tan^2 \theta \cos^2 \theta + \sin^2 \theta$

L.S.
$$= \frac{\cot \theta}{\cos \theta} - \csc \theta$$
$$= \frac{\cot 45^{\circ}}{\cos 45^{\circ}} - \csc 45^{\circ}$$
$$= \frac{1}{\frac{1}{\sqrt{2}}} - \sqrt{2}$$
$$= \sqrt{2} - \sqrt{2}$$
$$= 0$$
$$= R.S.$$

The left side is equal to the right side, so $\theta = 45^{\circ}$ is verified.

) Substitute:
$$\theta = 45^{\circ}$$

L.S. = $\tan^{2}\theta \cos^{2}\theta + \sin^{2}\theta$
= $(\tan 45^{\circ})^{2}(\cos 45^{\circ})^{2} + (\sin 45^{\circ})^{2}$
= $(1)(\frac{1}{2}) + (\frac{1}{2})$
= 1
R.S. = $\frac{2}{\csc^{2}\theta}$
= $\frac{2}{(\csc 45^{\circ})^{2}}$
= $\frac{2}{(\sqrt{2})^{2}}$
= $\frac{2}{1}$
= $\frac{2}{1}$

The left side is equal to the right side, so $\theta = 45^{\circ}$ is verified.

ii) L.S. =
$$\frac{\cot \theta}{\cos \theta} - \csc \theta$$

= $\frac{\frac{\cos \theta}{\sin \theta}}{\cos \theta} - \frac{1}{\sin \theta}$
= $\frac{1}{\sin \theta} - \frac{1}{\sin \theta}$
= 0
= R.S.

The left side is equal to the right side, so the identity is proved.

ii) L.S. =
$$\tan^2\theta \cos^2\theta + \sin^2\theta$$

= $\left(\frac{\sin^2\theta}{\cos^2\theta}\right)(\cos^2\theta) + \sin^2\theta$
= $\sin^2\theta + \sin^2\theta$
= $2\sin^2\theta$
= $\frac{2}{\csc^2\theta}$
= R.S.

The left side is equal to the right side, so the identity is proved.

9. For each identity:

0

- i) Verify the identity for $\theta = \frac{7\pi}{6}$.
- ii) Prove the identity.

$$\mathbf{a)} \, \csc \theta = \frac{\csc \theta - 1}{1 - \sin \theta}$$

i) Substitute:
$$\theta = \frac{7\pi}{6}$$
L.S. = $\csc \theta$
= $\csc \frac{7\pi}{6}$
= $-\csc \frac{\pi}{6}$
= -2
R.S. = $\frac{\csc \theta - 1}{1 - \sin \theta}$
= $\frac{\csc \frac{7\pi}{6} - 1}{1 - \sin \frac{7\pi}{6}}$
= $\frac{-2 - 1}{1 - \left(-\frac{1}{2}\right)}$
= -2

The left side is equal to the right side, so $\theta = \frac{7\pi}{6}$ is verified.

ii) R.S. =
$$\frac{\csc \theta - 1}{1 - \sin \theta}$$

$$= \frac{\frac{1}{\sin \theta} - 1}{1 - \sin \theta}$$

$$= \frac{1 - \sin \theta}{(\sin \theta)(1 - \sin \theta)}$$

$$= \frac{1}{\sin \theta}$$

$$= \csc \theta$$

$$= L.S.$$

The left side is equal to the right side, so the identity is proved.

b)
$$\frac{\cos \theta - \cot \theta}{1 - \sin \theta} = -\cot \theta$$

i) Substitute:
$$\theta = \frac{7\pi}{6}$$

L.S. $= \frac{\cos \theta - \cot \theta}{1 - \sin \theta}$

$$= \frac{\cos \frac{7\pi}{6} - \cot \frac{7\pi}{6}}{1 - \sin \frac{7\pi}{6}}$$

$$= \frac{-\frac{\sqrt{3}}{2} - \sqrt{3}}{1 - \left(-\frac{1}{2}\right)}$$

$$= -\sqrt{3}$$
R.S. $= -\cot \theta$

$$= -\cot \frac{7\pi}{6}$$

The left side is equal to the right side, so $\theta = \frac{7\pi}{6}$ is verified.

ii) L.S.
$$= \frac{\cos \theta - \cot \theta}{1 - \sin \theta}$$

$$= \frac{\cos \theta - \frac{\cos \theta}{\sin \theta}}{1 - \sin \theta}$$

$$= \frac{(\cos \theta)(\sin \theta) - \cos \theta}{(1 - \sin \theta)(\sin \theta)}$$

$$= \frac{(\cos \theta)(\sin \theta - 1)}{(1 - \sin \theta)(\sin \theta)}$$

$$= \frac{-\cos \theta}{\sin \theta}$$

$$= -\cot \theta$$

$$= R.S.$$

The left side is equal to the right side, so the identity is proved.

- **10.** Use algebra to solve each equation over the domain $0 \le x < 2\pi$. Give the roots to the nearest hundredth where necessary.
 - a) $\tan x = \cot x$

b) $\cos x + \sqrt{3} \sin x = 0$

Assume $\tan x \neq 0$, then divide by

$$\frac{\tan x}{\tan x} = \frac{\cot x}{\tan x}$$

$$1 = \frac{1}{\tan^2 x}$$

$$\tan^2 x = 1$$

$$tan x = \pm 1$$

$$x = \frac{\pi}{4}, x = \frac{3\pi}{4}, x = \frac{5\pi}{4}, \text{ or } x = \frac{7\pi}{4}$$

For $\tan x = 0$, x = 0 or $x = \pi$ Verify by substitution that neither value of x is a root of the given equation.

Verify the roots by substitution.

Assume $\cos x \neq 0$, then divide by cos x.

$$\frac{\cos x}{\cos x} + \sqrt{3} \frac{\sin x}{\cos x} = 0$$

$$1 + \sqrt{3} \tan x = 0$$

$$\tan x = -\frac{1}{\sqrt{3}}$$

$$x = \frac{5\pi}{6} \text{ or } x = \frac{11\pi}{6}$$

For
$$\cos x = 0$$
, $x = \frac{\pi}{2}$ or $x = \frac{3\pi}{2}$

Verify by substitution that neither value of x is a root of the given equation.

Verify the roots by substitution.

c) $2 \cos x = 7 - 3 \sec x$

$$2\cos x = 7 - \frac{3}{\cos x}$$

Multiply by cos x, then collect terms on one side.

$$2 \cos^2 x - 7 \cos x + 3 = 0$$

$$(2 \cos x - 1)(\cos x - 3) = 0$$
Either $2 \cos x - 1 = 0$

$$\cos x = \frac{1}{2}$$

$$x = \frac{\pi}{3} \text{ or } x = \frac{5\pi}{3}$$

This equation has no solution. Verify the roots by substitution. **d**) $\sin^2 x = \sin x \cos x$

$$\sin^2 x - \sin x \cos x = 0$$

$$(\sin x)(\sin x - \cos x) = 0$$

Either
$$\sin x = 0$$

$$x = 0$$
 or $x = \pi$
Or $\sin x - \cos x = 0$

$$\sin x = \cos x$$

Assume $\cos x \neq 0$, then divide by $\cos x$.

$$\tan x = 1$$

$$x = \frac{\pi}{4} \text{ or } x = \frac{5\pi}{4}$$

For
$$\cos x = 0$$
, $x = \frac{\pi}{2}$ or $x = \frac{3\pi}{2}$

Verify by substitution that neither value of x is a root of the given equation. Verify the roots by substitution.

11. Identify any errors in this proof, then write a correct algebraic proof.

To prove:
$$\frac{\sin \theta}{1 - \sin \theta} = \frac{1}{\csc \theta - 1}$$

L.S.
$$= \frac{\sin \theta}{1 - \sin \theta}$$
$$= \frac{\sin \theta}{1} - \frac{\sin \theta}{\sin \theta}$$
$$= \sin \theta - 1$$
$$= \frac{1}{\csc \theta} - 1$$
$$= \frac{1}{\csc \theta - 1}$$

= R.S.

R.S.
$$= \frac{1}{\csc \theta - 1}$$
$$= \frac{1}{\frac{1}{\sin \theta} - 1}$$
$$= \frac{1}{\frac{1 - \sin \theta}{\sin \theta}}$$
$$= \frac{\sin \theta}{1 - \sin \theta}$$
$$= 1.S.$$

From the 1st line of the proof to the 2nd line, $\frac{\sin \theta}{1 - \sin \theta}$ cannot be written as $\frac{\sin \theta}{1} - \frac{\sin \theta}{\sin \theta}$

From the 4th line of the proof to the 5th line, $\frac{1}{\csc \theta} - 1$ cannot be written as $\frac{1}{\csc \theta - 1}$.

12. Identify which equation below is an identity. Justify your answer. Prove the identity. Solve the other equation over the domain $-\pi \le x \le \pi$. Give the roots to the nearest hundredth.

a)
$$\frac{2\sin^2 x + 1}{\sin x} = 2\csc^2 x - 1$$
 b) $\frac{\sin^2 x + 1}{\sin x} = \frac{1 + \csc^2 x}{\csc x}$

I graphed each side of the equation. The graphs do not coincide, so this is an equation.

From the graphs, the roots are approximately: x = 0.81 and x = 2.33

$$\mathbf{b}) \frac{\sin^2 x + 1}{\sin x} = \frac{1 + \csc^2 x}{\csc x}$$

I graphed each side of the equation. The graphs appear to coincide, so this is probably the identity.

$$R.S. = \frac{1 + \csc^2 x}{\csc x}$$
$$= \frac{1 + \frac{1}{\sin^2 x}}{\frac{1}{\sin x}}$$

Multiply numerator and denominator by $\sin^2 x$.

$$R.S. = \frac{\sin^2 x + 1}{\sin x}$$
$$= L.S.$$

The left side is equal to the right side, so the identity is proved.

C

13. Here are two identities that involve the cotangent ratio:

$$\cot \theta = \frac{1}{\tan \theta}$$
 and $\cot \theta = \frac{\cos \theta}{\sin \theta}$

a) Show how you can derive one identity from the other.

$$\cot \theta = \frac{1}{\tan \theta} \quad \text{Write } \tan \theta = \frac{\sin \theta}{\cos \theta}.$$

$$\cot \theta = \frac{1}{\sin \theta}$$
 Multiply numerator and denominator by $\cos \theta$.

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

b) Determine the non-permissible values of θ for each identity. Explain why these values are different. How could you illustrate this using graphing technology?

For
$$\cot\theta=\frac{1}{\tan\theta}$$
 For $\cot\theta=\frac{\cos\theta}{\sin\theta}$ Since $\tan\theta=\frac{\sin\theta}{\cos\theta}$, then $\sin\theta\neq0$ So, $\theta\neq\pi k$, $k\in\mathbb{Z}$ and $\theta\neq\frac{\pi}{2}+\pi k$, $k\in\mathbb{Z}$

The values are different because there are two restrictions for $\frac{1}{\tan \theta}$ and only one restriction for $\frac{\cos \theta}{\sin \theta}$.

When I graph $y = \frac{1}{\tan \theta}$, and set the TABLE for intervals of $\frac{\pi}{2}$, it shows

ERROR for all values of X in the table. When I graph $y = \frac{\cos \theta}{\sin \theta}$, with the same TABLE settings, it shows ERROR only for $X = \pi k, k \in \mathbb{Z}$.