Lesson 6.1 Exercises, pages 474-480

- **3.** Use technology to determine the value of each trigonometric ratio to the nearest thousandth.
 - a) sin 415°
- **b**) $\cos (-65^{\circ})$
- c) cot 72°
- d) csc 285°

$$\doteq 0.423$$

$$= \frac{1}{\tan 72^{\circ}}$$
$$= 0.325$$

- **4.** Sketch each angle in standard position, then identify the reference angle.
 - **a**) 460°

A coterminal angle is: $460^{\circ} - 360^{\circ} = 100^{\circ}$

 $180^{\circ} - 100^{\circ} = 80^{\circ}$

The reference angle is:

A coterminal angle is:

 $360^{\circ} - 350^{\circ} = 10^{\circ}$

This is also the reference angle.

c) 695°

A coterminal angle is: $-720^{\circ} + 695^{\circ} = -25^{\circ}$ The reference angle is: 25° **d**) -500°

A coterminal angle is: $360^{\circ} - 500^{\circ} = -140^{\circ}$ The reference angle is: $180^{\circ} - 140^{\circ} = 40^{\circ}$

- **5.** For each angle in standard position below:
 - i) Determine the measures of angles that are coterminal with the angle in the given domain.
 - **ii**) Write an expression for the measures of all the angles that are coterminal with the angle in standard position.

a) 75°; for $-500^{\circ} \le \theta \le 500^{\circ}$

- i) Between 500° and 0°, the coterminal angles are: 75°; and 75° + 360° = 435° Between 0° and -500°, the coterminal angle is: 75° 360° = -285°
- ii) The measures of all the angles coterminal with 75° can be represented by the expression:

75° + k 360°, $k \in \mathbb{Z}$

b)
$$-105^{\circ}$$
;
for $-600^{\circ} \le \theta \le 600^{\circ}$

- i) Between 600° and 0°, the coterminal angle is: $-105^{\circ} + 360^{\circ} = 255^{\circ}$ Between 0° and -600°, the coterminal angles are: $-105^{\circ}; \text{ and }$ $-105^{\circ} 360^{\circ} = -465^{\circ}$
- ii) The measures of all the angles coterminal with -105° can be represented by the expression: $-105^{\circ} + k360^{\circ}, k \in \mathbb{Z}$

c) 215° ; for $-700^{\circ} \le \theta \le 700^{\circ}$

i) Between 700° and 0°, the coterminal angles are: 215°; and 215° + 360° = 575° Between 0° and -700°, the coterminal angles are: 215° - 360° = -145°; and 215° - 2(360°) = -505°

ii) The measures of all the angles coterminal with 215° can be represented by the expression: 215° + k360°, $k \in \mathbb{Z}$

- d) -290° ; for $-800^{\circ} \le \theta \le 800^{\circ}$
 - i) Between 800° and 0°, the coterminal angles are:
 -290° + 360° = 70°;
 -290° + 2(360°) = 430°; and
 -290° + 3(360°) = 790°
 Between 0° and -800°, the coterminal angles are:
 -290°; and
 -290° 360° = -650°
 - ii) The measures of all the angles coterminal with -290° can be represented by the expression: $-290^{\circ} + k360^{\circ}, k \in \mathbb{Z}$

6. Use exact values to complete this table.

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
0°, 0	0	1	0	_	1	_
30°, π/6	1 2	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	2	$\frac{2}{\sqrt{3}}$	$\sqrt{3}$
45°, $\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°, π/3	$\frac{\sqrt{3}}{2}$	1/2	$\sqrt{3}$	$\frac{2}{\sqrt{3}}$	2	$\frac{1}{\sqrt{3}}$
90°, π/2	1	0	_	1	_	0
120°, $\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$	$\frac{2}{\sqrt{3}}$	-2	$-\frac{1}{\sqrt{3}}$
135°, $\frac{3\pi}{4}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	-1	$\sqrt{2}$	$-\sqrt{2}$	-1
150°, ^{5π} / ₆	1 2	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{3}}$	2	$-\frac{2}{\sqrt{3}}$	$-\sqrt{3}$
180°, π	0	-1	0	_	-1	_
210°, ^{7π} / ₆	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	-2	$-\frac{2}{\sqrt{3}}$	$\sqrt{3}$
225°, ^{5π} / ₄	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	1	$-\sqrt{2}$	$-\sqrt{2}$	1
240°, $\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\sqrt{3}$	$-\frac{2}{\sqrt{3}}$	-2	$\frac{1}{\sqrt{3}}$
270°, ^{3π} / ₂	-1	0	_	-1	_	0
300°, ^{5π} / ₃	$-\frac{\sqrt{3}}{2}$	1 2	$-\sqrt{3}$	$-\frac{2}{\sqrt{3}}$	2	$-\frac{1}{\sqrt{3}}$
315°, ^{7π} / ₄	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	-1	$-\sqrt{2}$	$\sqrt{2}$	-1
330°, 11π/6	-1/2	$\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{3}}$	-2	$\frac{2}{\sqrt{3}}$	$-\sqrt{3}$
360°, 2π	0	1	0	-	1	-

You will return to this table when you complete Lesson 6.3 Exercises.

- **7.** Determine the exact values of the 6 trigonometric ratios for each angle.
 - a) 480°

A coterminal angle is: $480^{\circ} - 360^{\circ} = 120^{\circ}$

From the completed table in question 6:

$$\sin 480^{\circ} = \sin 120^{\circ}$$
 $\cos 480^{\circ} = \cos 120^{\circ}$ $\tan 480^{\circ} = \tan 120^{\circ}$
 $= \frac{\sqrt{3}}{2}$ $= -\frac{1}{2}$ $= -\sqrt{3}$
 $\csc 480^{\circ} = \frac{1}{\sin 120^{\circ}}$ $\sec 480^{\circ} = \frac{1}{\cos 120^{\circ}}$ $\cot 480^{\circ} = \frac{1}{\tan 120^{\circ}}$
 $= \frac{2}{\sqrt{3}}$ $= -2$ $= -\frac{1}{\sqrt{3}}$

b) -855°

A coterminal angle is: $1080^{\circ} - 855^{\circ} = 225^{\circ}$

From the completed table in question 6:

$$\sin (-855^{\circ}) = \sin 225^{\circ}$$
 $\cos (-855^{\circ}) = \cos 225^{\circ}$ $\tan (-855^{\circ}) = \tan 225^{\circ}$
 $= -\frac{1}{\sqrt{2}}$ $= -\frac{1}{\sqrt{2}}$ $= 1$
 $\csc (-855^{\circ}) = \frac{1}{\sin 225^{\circ}}$ $\sec (-855^{\circ}) = \frac{1}{\cos 225^{\circ}}$ $\cot (-855^{\circ}) = \frac{1}{\tan 225^{\circ}}$
 $= -\sqrt{2}$ $= -\sqrt{2}$ $= 1$

- **8.** For each point P(x, y) on the terminal arm of an angle θ in standard position, determine the exact values of the six trigonometric ratios for θ .
 - **a)** P(2, 1)

b)
$$P(3, -4)$$

Let the distance between the origin and P be r.

Use:
$$x^2 + y^2 = r^2$$

Substitute: $x = 2$, $y = 1$
 $2^2 + 1^2 = r^2$

$$2^2 + 1^2 = r^2$$
$$r = \sqrt{5}$$

The terminal arm lies in Quadrant 1.

$$\sin \theta = \frac{1}{\sqrt{5}} \qquad \csc \theta = \sqrt{5} \qquad \qquad \sin \theta = -\frac{4}{5} \qquad \csc \theta = -\frac{5}{4}$$

$$\cos \theta = \frac{2}{\sqrt{5}} \qquad \sec \theta = \frac{\sqrt{5}}{2} \qquad \qquad \cos \theta = \frac{3}{5} \qquad \sec \theta = \frac{5}{3}$$

$$\tan \theta = \frac{1}{2} \qquad \cot \theta = 2 \qquad \qquad \tan \theta = -\frac{4}{3} \qquad \cot \theta = -\frac{3}{4}$$

Let the distance between the origin and P be
$$r$$
.
Use: $x^2 + y^2 = r^2$
Substitute: $x = 3$, $y = -4$
 $3^2 + (-4)^2 = r^2$
 $r = 5$

The terminal arm lies in Quadrant 4.

$$\sin \theta = -\frac{4}{5}$$
 $\csc \theta = -\frac{5}{4}$
 $\cos \theta = \frac{3}{5}$ $\sec \theta = \frac{5}{5}$

$$\tan\theta = -\frac{4}{3} \quad \cot\theta = -\frac{3}{4}$$

9. For each point P(x, y) on the terminal arm of an angle θ in standard position, determine possible measures of θ in the given domain. Give the answers to the nearest degree.

a)
$$P(-4, 2)$$
;
for $-360^{\circ} < \theta < 0^{\circ}$

b)
$$P(-4, -8)$$
;
for $-360^{\circ} \le \theta \le 360^{\circ}$

The terminal arm of angle θ lies in Quadrant 2.

The terminal arm of angle θ lies in Quadrant 3.

The reference angle is:

The reference angle is:
$$tan^{-1}\left(\frac{8}{4}\right) \doteq 63^{\circ}$$

$$\tan^{-1}\left(\frac{2}{4}\right) \doteq 27^{\circ}$$

So, $\theta \doteq 180^{\circ} - 27^{\circ}$, or 153°

So, $\theta = 180^{\circ} + 63^{\circ}$, or 243°

The angle between -360° and 0° that is coterminal with 153° is: The angle between −360° and 0° that is coterminal with 243° is: $-360^{\circ} + 243^{\circ} = -117^{\circ}$

 $-360^{\circ} + 153^{\circ} = -207^{\circ}$ Possible value of θ is:

Possible values of θ are

approximately -207°

- approximately: 243° and -117°
- **10.** For each trigonometric ratio, determine the exact values of the other 5 trigonometric ratios for θ in the given domain.

a)
$$\cos \theta = \frac{1}{\sqrt{2}}$$
;
for $0^{\circ} < \theta < 180^{\circ}$

b)
$$\cot \theta = -\sqrt{3}$$
;
 $\cot 90^{\circ} < \theta < 270^{\circ}$

Use the completed table in question 6.

From the given domain,
$$\theta=45^{\circ}$$

$$\cot \theta = -\sqrt{3}$$
 for $\theta = 150^{\circ}$ or $\theta = 330^{\circ}$
From the given domain, $\theta = 150^{\circ}$

Then:
$$\cos \theta = \frac{1}{\sqrt{2}}$$
, $\sec \theta = \sqrt{2}$,

Then:
$$\cot \theta = -\sqrt{3}$$
, $\tan \theta = -\frac{1}{\sqrt{3}}$

$$\sin\theta = \frac{1}{\sqrt{2}}, \cos\theta = \sqrt{2},$$

$$\sin \theta = \frac{1}{2}, \csc \theta = 2,$$

$$\tan \theta = 1$$
, and $\cot \theta = 1$

$$\cos \theta = -\frac{\sqrt{3}}{2}$$
, and $\sec \theta = -\frac{2}{\sqrt{3}}$

11. For each value of the trigonometric ratio below, determine possible measures of angle θ in the given domain. Give the angles to the nearest degree.

a)
$$\sin \theta = -\frac{1}{2}$$
; for $-360^{\circ} \le \theta \le 360^{\circ}$

Since $\sin \theta$ is negative, the terminal arm of angle θ lies in Quadrant 3 or 4. For the domain $0^{\circ} \le \theta \le 360^{\circ}$, from the completed table in question 6,

$$\theta = 210^{\circ} \text{ or } \theta = 330^{\circ}$$

For the domain
$$-360^{\circ} \le \theta \le 0^{\circ}$$
, $\theta = -150^{\circ}$ or $\theta = -30^{\circ}$

b) cot
$$\theta = 1$$
; for $0^{\circ} \le \theta \le 720^{\circ}$

Since $\cot \theta$ is positive, the terminal arm of angle θ lies in Quadrant 1 or 3. For the domain $0^{\circ} \le \theta \le 360^{\circ}$, from the completed table in question 6, $\theta = 45^{\circ}$ or $\theta = 225^{\circ}$

For the domain
$$360^{\circ} \le \theta \le 720^{\circ}$$
,

$$\theta = 45^{\circ} + 360^{\circ}$$
 or $\theta = 225^{\circ} + 360^{\circ}$
= 405° = 585°

The angles are: 45°, 225°, 405°, and 585°

c)
$$\sec \theta = -11$$
; for $0^{\circ} \le \theta \le 360^{\circ}$

Since $\sec \theta$ is negative, the terminal arm of angle θ lies in Quadrant 2 or 3.

The reference angle is:
$$cos^{-1} \left(\frac{1}{11}\right) \doteq 85^{o}$$

For the domain
$$0^{\circ} \le \theta \le 360^{\circ}$$
:

In Quadrant 2,
$$\theta \doteq 180^{\circ} - 85^{\circ}$$
, or approximately 95°

In Quadrant 3,
$$\theta = 180^{\circ} + 85^{\circ}$$
, or approximately 265°

To the nearest degree, the angles are: 95° and 265°

12. Perpendicular lines are drawn from the axes to the terminal arm of an angle θ in standard position. Lines DC and EF are tangents to the unit circle. Explain why each trigonometric ratio is equal to the length of the indicated line segment.

a) PA =
$$\sin \theta$$

In right
$$\triangle$$
OPA,
 $\sin \theta = \frac{PA}{OP}$

$$\sin \theta = \frac{PA}{4}$$

So, PA =
$$\sin \theta$$

b) PB =
$$\cos \theta$$

In right
$$\triangle$$
BOP,

$$\angle BOP = 90^{\circ} - \theta$$

So,
$$\angle OPB = \theta$$

$$\cos\theta = \frac{PB}{OP}$$

$$\cos \theta = \frac{PB}{1}$$

So, $PB = \cos \theta$

c) OF =
$$\csc \theta$$

In right
$$\triangle$$
OEF,
 \angle EFO = θ

$$\sin \theta = \frac{EO}{OF}$$

$$\sin \theta = \frac{1}{\Omega E}$$

So, OF =
$$\csc \theta$$

d) DC =
$$\tan \theta$$

$$\tan\theta = \frac{DC}{OC}$$

$$\tan \theta = \frac{DC}{1}$$

So, DC =
$$\tan \theta$$

e)
$$FE = \cot \theta$$

In right
$$\triangle$$
OEF,
 \angle EFO = θ
 $\tan \theta = \frac{OE}{EF}$
 $\tan \theta = \frac{1}{EF}$
So, EF = $\cot \theta$

f) DO =
$$\sec \theta$$

In right
$$\triangle$$
DOC,
 $\cos \theta = \frac{\text{OC}}{\text{DO}}$
 $\cos \theta = \frac{1}{\text{DO}}$
So, DO = $\sec \theta$