PRACTICE TEST, pages 681–684

1. Multiple Choice What are the roots of the equation

 $2 \sin x \cos x = 2 \sin^2 x$ over the domain $0 \le x < 2\pi$?

A.
$$x = \frac{\pi}{4}, x = \frac{5\pi}{4}$$

B.
$$x = \frac{3\pi}{4}, x = \frac{7\pi}{4}$$

$$x = \frac{\pi}{4}, x = \frac{5\pi}{4}, x = 0, x = \pi$$

$$\mathbf{D}.x = \frac{3\pi}{4}, x = \frac{7\pi}{4}, x = 0, x = \pi$$

2. Multiple Choice What is the simplest form of

 $\cos 5x \sin 2x - \sin 5x \cos 2x$?

$$\bigcirc$$
 - sin 3x

B.
$$\sin 3x$$
 C. $-\sin 7x$

 \mathbf{D} , $\sin 7x$

3. Use graphing technology to determine the general solution of the equation $\cot x = \sin x + 1$. Give the answers to the nearest hundredth.

Graph
$$y = \frac{1}{\tan x} - \sin x - 1$$
 for $-2\pi \le x < 2\pi$.

The period of the function is 2π .

The approximate zeros of the function are: -5.708359, -1.570796, 0.5748263, 4.712389

Alternate zeros have a difference of 2π .

The general solution is: $x = 0.57 + 2\pi k$, $k \in \mathbb{Z}$ or $x = 4.71 + 2\pi k$, $k \in \mathbb{Z}$

4. Solve the equation $\sin x + 1 = 2 \cos^2 x$ over the domain

 $-\frac{3\pi}{2} \le x < \frac{\pi}{2}$. Give the exact roots.

$$\sin x + 1 = 2\cos^2 x$$

$$\sin x + 1 = 2(1 - \sin^2 x)$$

$$2\sin^2 x + \sin x - 1 = 0$$

$$(2 \sin x - 1)(\sin x + 1) = 0$$

Either
$$2 \sin x - 1 = 0$$
 or $\sin x + 1 = 0$ $\sin x = \frac{1}{2}$ $x = \frac{\pi}{6}$ or $x = -\frac{7\pi}{6}$ $x = -\frac{\pi}{2}$

$$\sin x = \frac{\pi}{2}$$

$$7\pi \qquad \qquad x = -\frac{\pi}{2}$$

The roots are:
$$x = -\frac{7\pi}{6}$$
, $x = -\frac{\pi}{2}$, and $x = \frac{\pi}{6}$

5. Determine the general solution of the equation $\sin 4x = \frac{1}{\sqrt{2}}$ over the set of real numbers.

$$\sin 4x = \frac{1}{\sqrt{2}}$$

$$4x = \frac{\pi}{4} \quad \text{or} \quad 4x = \frac{3\pi}{4}$$

$$4x = \frac{\pi}{4}$$
 or $4x = \frac{3\pi}{4}$
 $x = \frac{\pi}{16}$ $x = \frac{3\pi}{16}$

The period of $\sin 4x$ is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$.

So, the general solution is:
$$x = \frac{\pi}{16} + \frac{\pi}{2}k$$
, $k \in \mathbb{Z}$ or $x = \frac{3\pi}{16} + \frac{\pi}{2}k$, $k \in \mathbb{Z}$

- **6.** For the identity $\frac{\cos \theta + \cot \theta}{1 + \sin \theta} = \cot \theta$
 - a) Determine the non-permissible values of θ .

Non-permissible values occur when: $\sin \theta = 0$, $\theta = \pi k$, $k \in \mathbb{Z}$ or

$$1 + \sin \theta = 0$$

$$\sin \theta = -1$$

$$\theta = \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$$

b) Verify the identity graphically. Sketch or print the graph and explain how it verifies the identity.

Graph
$$y = \frac{\cos \theta + \frac{\cos \theta}{\sin \theta}}{1 + \sin \theta}$$
 and $y = \frac{\cos \theta}{\sin \theta}$.

The graphs coincide so the identity is verified.

c) Verify the identity for $\theta = \frac{\pi}{3}$. Explain why this verification does not prove the identity.

Substitute $\theta = \frac{\pi}{3}$ in each side of the identity.

L.S.
$$= \frac{\cos \theta + \cot \theta}{1 + \sin \theta}$$

$$= \frac{\cos \frac{\pi}{3} + \cot \frac{\pi}{3}}{1 + \sin \frac{\pi}{3}}$$

$$= \frac{\left(\frac{1}{2}\right) + \left(\frac{1}{\sqrt{3}}\right)}{1 + \left(\frac{\sqrt{3}}{2}\right)}$$

$$= \frac{\frac{\sqrt{3} + 2}{2\sqrt{3}}}{\frac{2 + \sqrt{3}}{2}}$$

$$= \frac{1}{\sqrt{3}}$$

The left side is equal to the right side, so the identity is verified. This verification does not prove the identity because there may be values of θ , apart from the non-permissible values, for which the left side does not equal the right side.

d) Prove the identity.

L.S.
$$= \frac{\cos \theta + \cot \theta}{1 + \sin \theta}$$
$$= \frac{\cos \theta + \frac{\cos \theta}{\sin \theta}}{1 + \sin \theta}$$
$$= \frac{\sin \theta \cos \theta + \cos \theta}{(\sin \theta)(1 + \sin \theta)}$$
$$= \frac{(\cos \theta)(\sin \theta + 1)}{(\sin \theta)(1 + \sin \theta)}$$
$$= \frac{\cos \theta}{\sin \theta}$$
$$= \cot \theta$$
$$= R.S.$$

The left side is equal to the right side, so the identity is proved.

- **7.** Given angle α in standard position with its terminal arm in Quadrant 3 and $\sin \alpha = -\frac{2}{3}$, and angle β in standard position with its terminal arm in Quadrant 4 and $\cos \beta = \frac{3}{7}$, determine each exact value.
 - a) $\cos (\alpha \beta)$

b) tan 2α

Use:
$$x^2 + y^2 = r^2$$

For angle α , substitute: $y = -2$, $r = 3$

$$y = -2, r = 3$$

 $x^{2} + (-2)^{2} = 3^{2}$
 $x = \pm \sqrt{5}$

 $x = -\sqrt{5}$ since the terminal arm of angle α lies in Quadrant 3.

So,
$$\cos \alpha = -\frac{\sqrt{5}}{3}$$

Substitute for α and β in:

$$\cos (\alpha - \beta)$$

$$= \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$= \left(-\frac{\sqrt{5}}{3}\right)\left(\frac{3}{7}\right) + \left(-\frac{2}{3}\right)\left(-\frac{\sqrt{40}}{7}\right)$$

$$= \frac{-3\sqrt{5} + 2\sqrt{40}}{21}$$

For angle β , substitute:

$$x = 3, r = 7$$

 $3^{2} + y^{2} = 7^{2}$
 $y = \pm \sqrt{40}$

 $y=-\sqrt{40}$ since the terminal arm of angle $oldsymbol{eta}$ lies in Quadrant 4.

So,
$$\sin \beta = -\frac{\sqrt{40}}{7}$$

$$\tan 2\alpha = \frac{\sin 2\alpha}{\cos 2\alpha}$$

$$= \frac{2 \sin \alpha \cos \alpha}{\cos^2 \alpha - \sin^2 \alpha}$$

$$= \frac{2\left(-\frac{2}{3}\right)\left(-\frac{\sqrt{5}}{3}\right)}{\left(-\frac{\sqrt{5}}{3}\right)^2 - \left(-\frac{2}{3}\right)^2}, \text{ or } 4\sqrt{5}$$

8. Prove this identity: $\frac{2 - 2\cos 2\theta}{2\sin 2\theta} = \frac{\sec^2\theta - 1}{\tan\theta}$

L.S.
$$= \frac{2 - 2 \cos 2\theta}{2 \sin 2\theta}$$

$$= \frac{1 - \cos 2\theta}{\sin 2\theta}$$

$$= \frac{1 - (1 - 2 \sin^2 \theta)}{2 \sin \theta \cos \theta}$$

$$= \frac{2 \sin^2 \theta}{\cos \theta}$$

$$= \frac{\sin \theta}{\cos \theta}$$

$$= \frac{\sin \theta}{\cos \theta}$$

$$= \frac{\sin \theta}{\cos \theta}$$

The left side and the right side simplify to the same expression, so the identity is proved.